New Mg(II) and Ca(II) Mixed Strontium Squarates: Structural Characterization, DNA/BSA Interaction, Antioxidant and Anticancer Activities

Abstract

New mixed alkaline earth metal squarates, viz [Sr0.965Mg0.035(C4O4)(H2O)2]·H2O—(1) and [Sr0.88Ca0.12(C4O4)(H2O)3]—(2) have been synthesized and characterized by single-crystal X-ray diffraction, thermal analysis, and biological studies, EB-CTDNA binding, BSA binding, antioxidant and cytotoxicity activity. The complexes 1 and 2 crystallized in triclinic and monoclinic space groups with eight and nine coordination number, respectively, from the reaction mixture of squaric acid and the respective metal nitrates in aqueous medium at pH 7. The complexes on thermal analysis show that they yield mixed metal carbonates at 544 °C as residue. Their interaction with EB-CTDNA evaluated by emission method substantiates the intercalative mode of binding. The protein binding (BSA) study by the fluorescence quenching method reveals that the complexes bind strongly with BSA. Antioxidant property analysis shows that they exhibit a strong radical scavenging ability against ABTS, DPPH and NO radicals. The in vitro cytotoxicity of the complexes examined for human breast cancer (MCF-7) and lung cancer (A549) cell lines exhibit substantial cytotoxic property. AO/EB and DAPI staining methods support that they induce apoptosis and nuclear fragmentations in MCF-7 and A549 cell lines.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    C. Robl and A. Weiss (1986). Z Naturforsch B. 41, 1490–1494.

    Article  Google Scholar 

  2. 2.

    C. Robl and A. Weiss (1986). Z Naturforsch B. 41, 1485–1489.

    Article  Google Scholar 

  3. 3.

    C. Robl and A. Weiss (1987). Mater Res Bull. 22, 373–380.

    CAS  Article  Google Scholar 

  4. 4.

    A. Bouayad, J. C. Trombe, and A. Gleizes (1995). Inorganica Chim Acta. 230, 1–7.

    CAS  Article  Google Scholar 

  5. 5.

    Z. Hulvey and A. K. Cheetham (2007). Solid State Sci. 9, 137–143.

    CAS  Article  Google Scholar 

  6. 6.

    A. Bouhali, C. Trifa, S. Bouacida, C. Boudaren, and T. Bataille (2011). Acta Crystallogr Sect E Struct Rep Online. 67, m1130–m1131.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    C. Trifa, A. Bouhali, S. Bouacida, C. Boudaren, and H. Merazig (2013). Acta Crystallogr Sect E Struct Rep Online 69, m366–m367.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    C. Trifa, A. Bouhali, S. Bouacida, C. Boudaren, and T. Bataille (2011). Acta Crystallogr Sect E Struct Rep Online 67, m275–m276.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    K. T. Priya Vadhana, S. Parveen, B. Ushadevi, R. Selvakumar, S. Sangeetha, and S. Vairam (2019). Acta Crystallogr Sect C Struct Chem. 275, 1091–1101.

    Article  Google Scholar 

  10. 10.

    Z. Liu, Y. Wang, Y. Han, L. Liu, J. Jin, H. Yi, Z. Li, J. Jiang, and D. W. Boykin (2013). Eur J Med Chem. 65, 187–194.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    F. Olmo, C. Rotger, I. Ramirez-Macias, L. Martinez, C. Marin, L. Carreras, K. Urbanova, M. Vega, G. Chaves-Lemaur, A. Sampedro, M. J. Rosales, M. Sanchez-Moreno, and A. Costa (2014). J Med Chem. 57, 987–999.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    P. Xu, M. Kelly, W. F. Vann, F. Qadri, E. T. Ryan, and P. Kovac (2017). ChemBioChem. 18, 799–815.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    B. Palitzsch, S. Hartmann, N. Stergiou, M. Glaffig, E. Schmitt, and H. Kunz (2014). Angew Chemie Int Ed. 53, 14245–14249.

    CAS  Article  Google Scholar 

  14. 14.

    K. Morita, M. Nakamura, M. Nagamachi, T. Kishi, and Y. Miyachi (2002). J Dermatol. 29, 661–664.

    PubMed  Article  Google Scholar 

  15. 15.

    P. I. A. Freyschmidt-Paul, R. Happle, S. Metz, R. Hoffmann, J. P. Sundberg, K. J. McElwee, and D. Boggess (1999). J Invest Dermatol. 113, 61–68.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    C. A. Chen, V. Carlberg, and D. Kroshinsky (2017). Pediatr Dermatol. 34, e44–e46.

    PubMed  Article  Google Scholar 

  17. 17.

    N. B. Silverberg, J. K. Lim, A. S. Paller, and A. J. Mancini (2001). J Am Acad Dermatol. 42, 803–808.

    Article  Google Scholar 

  18. 18.

    W. A. Kinney, N. E. Lee, D. T. Garrison, E. J. Podlesny, J. T. Simmonds, D. Bramlett, R. R. Notvest, D. M. Kowal, and R. P. Tasse (1992). J Med Chem. 35, 4720–4726.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    J. A. Butera, M. M. Antane, S. A. Antane, T. M. Argentieri, C. Freeden, R. F. Graceffa, B. H. Hirth, D. Jenkins, J. R. Lennox, E. Matelan, N. Wesley Norton, D. Quagliato, J. H. Sheldon, W. Spinelli, D. Warga, A. Wojdan, and M. Woods (2000). J Med Chem. 43, 1187–1202.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    A. M. Gilbert, M. M. Antane, T. M. Argentieri, J. A. Butera, G. D. Francisco, C. Freeden, E. G. Gundersen, R. F. Graceffa, D. Herbst, B. H. Hirth, J. R. Lennox, G. McFarlane, N. Wesley Norton, D. Quagliato, J. H. Sheldon, D. Warga, A. Wojdan, and M. Woods (2000). J Med Chem. 43, 1203–1214.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    A. Mookerjee, M. Graciotti, and L. Kandalaft (2018). Bioimpacts. 8, 211–221.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    A. Chaudhuri, Y. Venkatesh, J. Das, K. K. Behara, S. Mandal, T. K. Maiti, and N. D. P. Singh (2018). ACS Appl Nano Mater. 1, 6312–6319.

    CAS  Article  Google Scholar 

  23. 23.

    M. A. Sayeed, M. K. Bufano, P. Xu, G. Eckhoff, R. C. Charles, M. M. Alam, T. Sultana, M. R. Rashu, A. Berger, G. Gonzalez-Escobedo, A. Mandlik, T. R. Bhuiyan, D. T. Leung, R. C. LaRocque, J. B. Harris, S. B. Calderwood, F. Qadri, W. F. Vann, P. Kovac, and E. T. Ryan (2015). PLoS Negl Trop Dis. 9, 1–18.

    Article  CAS  Google Scholar 

  24. 24.

    Y. Li, C. Wen, D. Mushahary, R. Sravanthi, N. Harishankar, G. Pande, and P. Hodgson (2012). Acta Biomater. 8, 3177–3188.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, and X. Wang (2015). Mater Des. 83, 95–102.

    CAS  Article  Google Scholar 

  26. 26.

    J. Seo, E. S. Hong, H. J. Yoon, and S. K. Shin (2012). Int J Mass Spectrom. 330–332, 262–270.

    Article  CAS  Google Scholar 

  27. 27.

    J. Duguid, V. A. Bloomfield, J. Benevides, and G. J. Thomas (1993). Biophys J. 65, 1916–1928.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    J. Sponer, J. V. Burda, M. Sabat, J. Leszczynski, and P. Hobza (1998). J Phys Chem A. 102, 5951–5957.

    CAS  Article  Google Scholar 

  29. 29.

    T. Marino, D. Mazzuca, N. Russo, M. Toscano, and A. Grand (2010). Int J Quantum Chem. 110, 138–147.

    CAS  Article  Google Scholar 

  30. 30.

    C. Wu, Z. Chen, D. Yi, J. Chang, and Y. Xiao (2014). ACS Appl Mater Interfaces. 6, 4264–4276.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    W. Wang, J. Han, X. Yang, M. Li, P. Wan, L. Tan, Y. Zhang, and K. Yang (2016). Mater Sci Eng B. 214, 26–36.

    CAS  Article  Google Scholar 

  32. 32.

    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans (1999). Free Radic Biol Med. 26, 1231–1237.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    S. C. Liu, J. T. Lin, C. K. Wang, H. Y. Chen, and D. J. Yang (2009). Food Chem. 114, 577–581.

    CAS  Article  Google Scholar 

  34. 34.

    B. M. Olabinr, O. O. Odedire, M. T. Olaleye, A. S. Adekunl, L. O. Ehigie, and P. F. Olabinr (2010). Res J Biol Sci. 5, 102–105.

    Article  Google Scholar 

  35. 35.

    S. Vairam and S. Govindarajan (2006). Polish J Chem. 80, 1601–1614.

    CAS  Google Scholar 

  36. 36.

    J. R. Ferraro, R. Driver, W. R. Walker, and W. Wozniak (1967). Inorg Chem. 6, 1586–1588.

    CAS  Article  Google Scholar 

  37. 37.

    J. C. Trombe, J. F. Petit, and A. Gleizes (1990). Inorganica Chim Acta. 167, 69–81.

    CAS  Article  Google Scholar 

  38. 38.

    C. C. Correa, R. Diniz, L. H. Chagas, B. L. Rodrigues, M. I. Yoshida, W. M. Teles, F. C. Machado, H. G. M. Edwards, and L. F. C. De Oliveira (2007). Vib Spectrosc. 45, 82–88.

    CAS  Article  Google Scholar 

  39. 39.

    C. C. Correa, R. Diniz, L. H. Chagas, B. L. Rodrigues, M. I. Yoshida, W. M. Teles, F. C. Machado, and L. F. C. De Oliveira (2007). Polyhedron. 26, 989–995.

    CAS  Article  Google Scholar 

  40. 40.

    E. Knaepen, J. Mullens, J. Yperman, and L. C. Van Poucke (1996). Thermochim Acta. 284, 213–227.

    CAS  Article  Google Scholar 

  41. 41.

    D. L. Boger, B. E. Fink, S. R. Brunette, W. C. Tse, and M. P. Hedrick (2001). J Am Chem Soc. 123, 5878–6589.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    D. S. Raja, N. S. P. Bhuvanesh, and K. Natarajan (2012). Dalt Trans. 41, 4365–4377.

    CAS  Article  Google Scholar 

  43. 43.

    R. Prabhakaran, P. Kalaivani, R. Huang, P. Poornima, V. Vijaya Padma, F. Dallemer, and K. Natarajan (2013). J Biol Inorg Chem. 18, 233–247.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    R. Manikandan, N. Chitrapriya, Y. J. Jang, and P. Viswanathamurthi (2013). RSC Adv. 3, 11647–11657.

    CAS  Article  Google Scholar 

  45. 45.

    R. Manikandan, P. Viswanathamurthi, K. Velmurugan, R. Nandhakumar, T. Hashimoto, and A. Endo (2014). J Photochem Photobiol B Biol. 130, 205–216.

    CAS  Article  Google Scholar 

  46. 46.

    O. Novakova, H. Chen, O. Vrana, A. Rodger, P. J. Sadler, and V. Brabec (2003). Biochemistry. 42, 11544–11554.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    L. S. Lerman (1961). J Mol Biol. 3, 18–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    B. C. Jonathan (1997). Biopolymers. 44, 201–215.

    Article  Google Scholar 

  49. 49.

    R. D. Snyder (2007). Mutat Res. 623, 72–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    K. Pasternak, J. Kocot, and A. Horecka (2010). J Element. 15, 601–616.

    Google Scholar 

  51. 51.

    A. Kosiha, C. Parthiban, and K. Elango (2017). J Photochem Photobiol B. 168, 165–174.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    G. Kalaiarasi, S. Dharani, H. Puschmann, and R. Prabhakaran (2018). Inorg Chem Commun. 97, 34–38.

    CAS  Article  Google Scholar 

  53. 53.

    J. N. Miller (1979). Proc Anal Div Chem Soc. 16, 203–208.

    CAS  Google Scholar 

  54. 54.

    J. Tang, F. Luan, and X. Chen (2006). Bioorg Med Chem. 14, 3210–3217.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    D. Senthil Raja, G. Paramaguru, N. S. P. Bhuvanesh, J. H. Reibenspies, R. Renganathan, and K. Natarajan (2011). Dalt Trans. 40, 4548–4559.

    Article  CAS  Google Scholar 

  56. 56.

    J. S. Wright, E. R. Johnson, and G. A. Dilabio (2001). J Am Chem Soc. 123, 1173–1183.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    K. Tsai, T. G. Hsu, K. M. Hsu, H. Cheng, T. Y. Liu, C. F. Hsu, and C. W. Kong (2001). Free Radic Biol Med. 31, 1465–1472.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    R. Loganathan, S. Ramakrishnan, E. Suresh, M. Palaniandavar, A. Riyasdeen, and M. A. Akbarsha (2014). Dalt Trans. 43, 6177–6194.

    CAS  Article  Google Scholar 

  59. 59.

    M. Ganeshpandian, R. Loganathan, E. Suresh, A. Riyasdeen, M. A. Akbarsha, and M. Palaniandavar (2014). Dalt Trans. 43, 1203–1219.

    CAS  Article  Google Scholar 

  60. 60.

    S. Thakore, M. Valodkar, J. Y. Soni, K. Vyas, R. N. Jadeja, R. V. Devkar, and P. S. Rathore (2013). Bioorg Chem. 46, 26–30.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    P. Naveen, F. Dallemer, R. J. Butcher, and R. Prabhakaran (2018). Inorganica Chim Acta. 471, 724–734.

    CAS  Article  Google Scholar 

  62. 62.

    C. C. Zeng, G. B. Jiang, S. H. Lai, C. Zhang, H. Yin, B. Tang, D. Wan, and Y. J. Liu (2016). J Photochem Photobiol B Biol. 161, 295–303.

    CAS  Article  Google Scholar 

  63. 63.

    T. Thirunavukkarasu, H. A. Sparkes, K. Natarajan, and V. G. Gnanasoundari (2018). Inorganica Chim Acta. 473, 255–262.

    CAS  Article  Google Scholar 

  64. 64.

    N. Nanjundan, R. Narayanasamy, R. J. Butcher, J. P. Jasinski, K. Velmurugan, R. Nandhakumar, M. D. Balakumaran, P. T. Kalaichelvan, and V. G. Gnanasoundari (2017). Inorganica Chim Acta. 455, 283–297.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Vairam.

Ethics declarations

Conflict of interest

The authours declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 1821 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Priya Vadhana, K.T., Vairam, S., Ushadevi, B. et al. New Mg(II) and Ca(II) Mixed Strontium Squarates: Structural Characterization, DNA/BSA Interaction, Antioxidant and Anticancer Activities. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-01989-7

Download citation

Keywords

  • Squaric acid
  • Strontium–magnesium complex
  • Strontium–calcium complex
  • Bridging ligands
  • Antioxidants
  • Cytotoxicity