Construction of High Efficient g-C3N4 Nanosheets Combined with Bi2MoO6 Photoanodes for Dye Sensitized Solar Cells

Abstract

In this study, two narrow band gap semiconductor nanomaterials, graphitic carbon nitride (g-C3N4) and Bi2MoO6, were selected and coupled to form series of g-C3N4/Bi2MoO6 photoanodes. The existence of strong interfacial interactions between g-C3N4 and Bi2MoO6 were extensively characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV–Vis diffuse reflectance spectra (UV–Vis DRS) and Photoluminescence (PL). XRD and TEM results suggest that Bi2MoO6 belongs to orthorhombic crystal structure with fiber like morphology with average diameter of 20–30 nm and length up to several micrometers. Sandwich type solar cell was fabricated by deposition the hybrid materials on FTO glass substrate and technically studied the photovoltaic (PV) parameters through J–V characteristics. The results express that g-C3N4/Bi2MoO6 hybrid photoanode show fabulous photo conversion efficiency (PCE) of (13.56%), excellent stability and reusability. The superior photovoltaic performance of g-C3N4/Bi2MoO6 nanocomposite was owing to the interface of g-C3N4/Bi2MoO6 heterostructures whereas reduced the band-gap which enables high separation efficiency, suppressed recombination rate of charge carriers and their high specific surface area (103.56 m2/g). A possible photovoltaic mechanism under sun light was systematically discussed based on the experiment results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    M. Wang, A. M. Anghel, B. Marsan, N.-L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin, and M. Grätzel (2009). J. Am. Chem. Soc. 131, 15976.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    W. Wei, H. Wang, and Y. H. Hu (2014). Int. J. Energy Res. 38, 1099.

    CAS  Article  Google Scholar 

  3. 3.

    M. Grätzel (2003). J. Photochem. Photobiol. C 4, 145.

    Article  CAS  Google Scholar 

  4. 4.

    W. Wei, H. Wang, and Y. H. Hu (2013). J. Mater. Chem. 1, 14350.

    CAS  Article  Google Scholar 

  5. 5.

    X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe (2004). J. Electroanalyt. Chem. 570, 257.

    CAS  Article  Google Scholar 

  6. 6.

    S.-S. Kim, Y.-C. Nah, Y.-Y. Noh, J. Jo, and D.-Y. Kim (2006). Electrochim. Acta. 51, 3814.

    CAS  Article  Google Scholar 

  7. 7.

    Z. Mao, J. Chen, Y. Yang, D. Wang, L. Bie, B. D. Fahlman, and A. C. S. Appl (2017). Mater. Interfaces. 9, 12427.

    CAS  Article  Google Scholar 

  8. 8.

    L. Zhang, X. He, X. Xu, C. Liu, Y. Duan, L. Hou, Q. Zhou, et al. (2017). Appl. Catal. B 1, 203.

    Google Scholar 

  9. 9.

    X. Dong, J. Li, Q. Xing, Y. Zhou, H. Huang, and F. Dong (2018). Appl. Catal. B Environ. 232, 69.

    CAS  Article  Google Scholar 

  10. 10.

    H. W. Huang, Y. He, Z. S. Lin, L. Kang, and Y. H. Zhang (2013). J. Phys. Chem. C 117, 22986.

    CAS  Article  Google Scholar 

  11. 11.

    H. W. Huang, X. Han, X. W. Li, S. C. Wang, P. K. Chu, Y. H. Zhang, and A. C. S. Appl (2015). Mater. Interfaces 7, 482.

    CAS  Article  Google Scholar 

  12. 12.

    H. W. Huang, X. W. Li, J. J. Wang, F. Dong, P. K. Chu, T. R. Zhang, and Y. H. Zhang (2015). ACS Catal. 5, 4094.

    CAS  Article  Google Scholar 

  13. 13.

    M. Y. Zhang, C. L. Shao, J. B. Mu, Z. Y. Zhang, Z. C. Guo, P. Zhang, and Y. C. Liu (2012). Cryst. Eng. Commun. 14, 605.

    CAS  Article  Google Scholar 

  14. 14.

    C. S. Guo, J. Xu, S. F. Wang, Y. Zhang, Y. He, and X. C. Li (2013). Catal. Sci. Technol. 3, 1603.

    CAS  Google Scholar 

  15. 15.

    Y. Ma, Y. L. Jia, Z. B. Jiao, M. Yang, Y. X. Qi, and Y. P. Bi (2015). Chem. Commun. 51, 6655.

    CAS  Article  Google Scholar 

  16. 16.

    Y. S. Xu and W. D. Zhang (2013). Dalton Trans. 42, 1094.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Z. W. Zhao, W. D. Zhang, Y. J. Sun, J. Y. Yu, Y. X. Zhang, H. Wang, F. Dong, and Z. B. Wu (2016). J. Phys. Chem. C 120, 11898.

    Google Scholar 

  18. 18.

    H. Yu, L. Jiang, H. Wang, B. Huang, X. Yuan, J. Huang, J. Zhang, and G. Zeng (2019). Small 15, 1901008.

    Article  CAS  Google Scholar 

  19. 19.

    H. Li, W. Li, F. Wang, X. Liu, and C. Ren (2017). Appl. Catal. B 217, 378.

    CAS  Article  Google Scholar 

  20. 20.

    Q. Zhang, P. Chena, L. Chen, M. Wu, X. Dai, P. Xing, H. Lin, L. Zhao, and Y. He (2020). J. Colloid Interface Sci. 568, 117.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    P. Chen, L. Chen, S. Ge, W. Zhang, M. Wu, P. Xing, T. B. Rotamond, H. Lin, Y. Wu, and Y. He (2020). Int. J. Hydrog. Energy 45, 14354.

    CAS  Article  Google Scholar 

  22. 22.

    Z. Feng, L. Zeng, Q. Zhang, S. Ge, X. Zhao, H. Lin, and Y. He (2020). J. Environ. Sci. 87, 149.

    Article  Google Scholar 

  23. 23.

    P. Chen, P. Xing, Z. Chen, X. Hu, H. Lin, L. Zhao, and Y. He (2019). J. Colloid Interface Sci. 534, 163.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Z. Chen, P. Chen, P. Xing, X. Hu, H. Lin, L. Zhao, Y. Wu, and Y. He (2019). Evolution. Fuel. 241, 1.

    CAS  Article  Google Scholar 

  25. 25.

    S. Li, L. Bai, N. Ji, S. Yu, S. Lin, N. Tian, and H. Huang (2020). J. Mater. Chem. A. 8, 9268.

    CAS  Article  Google Scholar 

  26. 26.

    N. Tian, K. Xiao, Y. Zhang, X. Lu, L. Ye, P. Gao, T. Ma, and H. Huang (2015). Appl. Catal. B 253, 196.

    Article  CAS  Google Scholar 

  27. 27.

    N. Tain, H. Huang, X. Du, F. Dong, and Y. Zhang (2019). J. Mater. Chem. A 7, 11584.

    Article  Google Scholar 

  28. 28.

    Elham Vesali-Kermani, Aziz Habibi-Yangjeh, Hadi Diarmand-Khalilabad, and Srabanti Ghosh (2020). J Colloid Interface Sci 563, 81.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Haiping Li, Jingyi Liu, Wanguo Hou, Du Na, Renjie Zhang, and Xutang Tao (2014). Appl Catal B 160–161, 89.

    Article  CAS  Google Scholar 

  30. 30.

    Tianjin Ma, Wu Juan, Yidong Mi, Qinghua Chen, Dong Ma, and Chao Chai (2017). Sep. Purif. Technol. 183, 54.

    CAS  Article  Google Scholar 

  31. 31.

    S. Prabhu, M. Pudukudy, S. Harish, M. Navaneethan, S. Sohila, K. Murugesan, and R. Ramesh (2020). Mater. Sci. Semiconduct. Process. 106, 10454.

    Article  CAS  Google Scholar 

  32. 32.

    X. Qiao, Z. Zhang, Q. Li, D. Hou, Q. Zhang, J. Zhang, D. Li, P. Feng, and X. Bu (2018). J. Mater. Chem. A 6, 22580.

    CAS  Article  Google Scholar 

  33. 33.

    J. Wu, Y. Sun, C. Gu, T. Wang, Y. Xin, C. Chai, C. Cui, and D. Ma (2018). Appl. Catal. B 237, 622.

    CAS  Article  Google Scholar 

  34. 34.

    Q. Xiang, J. Yu, and M. Jaroniec (2011). J. Phys. Chem. C 115, 7355.

    CAS  Article  Google Scholar 

  35. 35.

    S. Wang, D. Li, C. Sun, S. Yang, Y. Guan, and H. He (2014). Appl. Catal. B 144, 885.

    CAS  Article  Google Scholar 

  36. 36.

    G. Tian, Y. Chen, W. Zhou, K. Pan, Y. Dong, C. Tian, and H. Fu (2011). J. Mater. Chem. 21, 887.

    CAS  Article  Google Scholar 

  37. 37.

    J. M. Fernández, C. Barriga, M. A. Ulibarri, F. M. Labajos, and V. Rives (1997). Chem. Mater. 9, 312.

    Article  Google Scholar 

  38. 38.

    M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito (2010). Nano Lett. 10, 751.

    CAS  Article  Google Scholar 

  39. 39.

    L. Zhang, T. Xu, X. Zhao, and Y. Zhu (2010). Appl. Catal. B 98, 138.

    CAS  Article  Google Scholar 

  40. 40.

    Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo (2006). J. Phys. Chem. B 110, 17790.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    M. Parthibavarman, S. Sathishkumar, M. Jayashree, and R. BoopathiRaja (2019). J. Clust. Sci. 30, 351.

    CAS  Article  Google Scholar 

  42. 42.

    M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, and R. BoopathiRaja (2018). J. Iran. Chem. Soc. 15, 2789.

    CAS  Article  Google Scholar 

  43. 43.

    J. An, G. Zhang, R. Zheng, and P. Wang (2016). J. Environ. Sci. (China) 48, 218.

    CAS  Article  Google Scholar 

  44. 44.

    R. BoopathiRaja and M. Parthibavarman (2019). J. Alloy. Compd. 811, 152084.

    CAS  Article  Google Scholar 

  45. 45.

    Z. Jia, F. Lyu, L. C. Zhang, S. Zeng, S. Liang, Y. Y. Li, and J. Lu (2019). Sci. Rep. 9, 7636.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    V. Shanmugam, A. L. Muppudathi, S. Jayavel, and K. S. Jayaperumal (2020). Arabian J. Chem. 13, 2439.

    CAS  Article  Google Scholar 

  47. 47.

    J. L. Lv, K. Dai, J. F. Zhang, L. Geng, C. H. Liang, and Q. C. Liu (2015). Appl. Surf. Sci. 358, 377.

    CAS  Article  Google Scholar 

  48. 48.

    D. Ma, J. Wu, M. C. Gao, Y. J. Xin, and C. Chai (2017). Chem. Eng. J. 316, 461.

    CAS  Article  Google Scholar 

  49. 49.

    H. P. Li, W. G. Hou, X. T. Tao, and N. Du (2015). Appl. Catal. B 172, 27.

    Article  CAS  Google Scholar 

  50. 50.

    L. F. Yang, X. G. Yu, M. S. Xu, H. Z. Chen, and D. R. Yang (2014). J. Mater. Chem. 2, 16877.

    CAS  Article  Google Scholar 

  51. 51.

    Zhuoqun Li, Feng Gong, Gang Zhou, and Zhong-Sheng Wang (2013). J. Phys. Chem. C 117, 6561.

    CAS  Article  Google Scholar 

  52. 52.

    M. Indhumathy and A. Prakasam (2019). J. Mater. Sci. 30, 15444.

    CAS  Google Scholar 

  53. 53.

    M. Indhumathy and A. Prakasam (2020). J. Clust. Sci. 31, 91.

    CAS  Article  Google Scholar 

  54. 54.

    Haoran Yan, Xin Tian, Yongxin Pang, Bo Feng, Ke Duan, Zuowan Zhou, Jie Weng, and J. Wang (2016). RSC Adv. 6, 102444.

    CAS  Article  Google Scholar 

  55. 55.

    Z. Yuan, R. Tang, Y. Zhang, and L. Yin (2017). J. Alloy. Compd. 691, 983.

    CAS  Article  Google Scholar 

  56. 56.

    Zong-Lin Yang, Zhen-Yun Zhang, Wei-Li Fan, Hu Chao-sheng, Ling Zhang, and Jun-Jie Qi (2019). Solar Energy 193, 859.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Stephen Raja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 323 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raja, J.S. Construction of High Efficient g-C3N4 Nanosheets Combined with Bi2MoO6 Photoanodes for Dye Sensitized Solar Cells. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-01987-9

Download citation

Keywords

  • g-C3N4
  • Bi2MoO6
  • Microwave irradiation
  • Photo-conversion efficiency
  • Solar cell