Photoluminescence and Thermoluminescence Properties of Nanophosphors, YVO4:Eu3+ and YVO4:Eu3+:Dy3+


The as-synthesized, europium-doped, yttrium orthovanadate nanostructures exhibited photoluminescence properties that can vary based on the preparation conditions. All the samples exhibit red emissions, and the strongest emission band was observed at 620 nm and assigned to the 5D0 → 7F2 transition of Eu3+. The high intensity of the band is a consequence of the lack of inversion symmetry at the Eu3+ site (D2d symmetry) in the host lattice. The optimal europium doping concentration was 6 mol% for both preparation methods. These samples were annealed to obtain micro and nanoscale crystallite sizes in a range of 7.56 nm to 132.65 nm, and the emission spectra were obtained. The results revealed that the photoluminescence (PL) properties were dependent on crystallite size, the PL quantum yield measurements increased with increasing crystallite size. The introduction of the dopant ions induced changes in the TL glow curve structure and the kinetic properties, modifying the radiative recombination efficiency. The TL results suggest that both europium and europium-dysprosium doped YVO4 nanocrystalline phosphor present good potential for β-irradiation dosimeter applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    C. Feldmann, T. Jüstel, C. R. Ronda, and P. J. Schmidt (2003). Inorganic luminescent materials:100 years of research and application. Adv. Funct. Mater. 13, 511–516.

    CAS  Article  Google Scholar 

  2. 2.

    Y. Li, D. Deng, Q. Wang, G. Li, and Y. Hua (2012). Luminescent properties of Mg3Ca3(PO4)4:Eu2+ blue-emitting phosphor for white light emitting diodes. J. Lumin. 132, 1179–1182.

    CAS  Article  Google Scholar 

  3. 3.

    N. Venkatachalam, E. Hemmer, T. Yamano, H. Hyodo, and H. Kishimoto (2012). Synthesis and toxicity assay of ceramic nanophosphors for bioimaging with near-infrared excitation. Prog. Cryst. Growth. Ch. 58, 121–134.

    CAS  Article  Google Scholar 

  4. 4.

    T. Tsurumi, H. Hirayama, M. Vacha, and T. Taniyama, Nanoscale Physics for Materials Science, 1st ed. (CRC Press Taylor&Francis Group, Boca Raton, 2010), p. F1.

    Google Scholar 

  5. 5.

    G. Hodes (2007). When small is different: some recent advances in concepts and applications of nanoscale phenomena. Adv. Mater. 19, 639–646.

    CAS  Article  Google Scholar 

  6. 6.

    P. N. Prasad, Nanophothonics, 1st ed. (Wiley-Interscience, New Jersey, 2004).

    Book  Google Scholar 

  7. 7.

    L. Yu, H. Song, S. Lu, Z. Liu, L. Yang, and X. Kong (2004). Luminescent properties of LaPO4: Eu nanoparticles and nanowires. J. Phys. Chem. B 108, 16697–16702.

    CAS  Article  Google Scholar 

  8. 8.

    N. Nuñez, J. Sabek, J. García-Sevillano, E. Cantelar, A. Escudero, M, Ocaña, Solvent-controlled synthesis and luminescence properties of uniform Eu:YVO4 nanophosphors with different morphologies, Eur. J. Inorg. Chem. 1301–1309 (2013)

  9. 9.

    W. Strek, E. Zych, and D. Hreniak (2002). Size effects on optical properties of Lu2O3:Eu3+ nanocrystallites. J. Alloys Comp. 344, 332–336.

    CAS  Article  Google Scholar 

  10. 10.

    S. İflazoğlua, A. Yılmaz, V. E. Kafadara, M. Topaksu, and A. N. Yazıcı (2019). Neutron + Gamma response of undoped and Dy doped MgB4O7 thermoluminescence dosimeter. Applied Radiation and Isotopes 147, 91–98.

    Article  Google Scholar 

  11. 11.

    J. Li, J. Q. Hao, C. Y. Li, C. X. Zhang, Q. Tang, Y. L. Zhang, Q. Su, and S. B. Wang (2005). Thermally stimulated luminescence studies for dysprosium doped strontium tetraborate. Radiation Measurements 39, 229–233.

    CAS  Article  Google Scholar 

  12. 12.

    L. Zhou, W. Wang, S. Yu, B. Nan, Y. Zhu, Y. Shi, H. Shi, X. Zhao, and Z. Lu (2016). Single-phase LiY(MoO4)2–x(WO4)x:Dy3+, Eu3+ phosphors with white luminescence for white LEDs. Materials Research Bulletin 84, 429–436.

    CAS  Article  Google Scholar 

  13. 13.

    G. Jia, Y. Song, M. Yang, Y. Huang, L. Zhang, and H. You (2009). Uniform YVO4:Ln3+ (Ln = Eu, Dy, and Sm) nanocrystals: Solvothermal synthesis and luminescence properties. Optical Materials 31, 1032–1037.

    CAS  Article  Google Scholar 

  14. 14.

    N. S. Singh, R. S. Ningthoujam, M. N. Luwang, S. D. Singh, and R. K. Vatsa (2009). Luminescence lifetime and quantum yield studies of YVO4:Ln3+ (Ln3+= Dy, Eu) nanoparticles: concentration and annealing effects. Chem. Phys. Lett. 480, 237–242.

    CAS  Article  Google Scholar 

  15. 15.

    B. O. Dabousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner (1995). Electroluminescence from CdSe quantum-dot/polymer composites. Appl. Phys. Lett. 66, 1316–1318.

    Article  Google Scholar 

  16. 16.

    M. P. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos (1998). Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 281, 2013–2016.

    CAS  Article  Google Scholar 

  17. 17.

    A. Klausch, H. Althues, T. Freudenberg, and S. Kaskel (2012). Wet chemical preparation of YVO4: Eu thin films as red-emitting phosphor layers for fully transparent flat dielectric discharge lamp. Thin Solid Films 520, 4297–4301.

    CAS  Article  Google Scholar 

  18. 18.

    M. Wu, S. Choi, and H. Jung (2016). Preparation of transparent red-emitting layer using hydrothermally synthesized YVO4:Eu3+ nanophosphors. Mater. Res. Bull. 78, 20–25.

    CAS  Article  Google Scholar 

  19. 19.

    Y. Liu, C. Yang, H. Xiong, N. Zhang, Z. Leng, R. Li, S. Gan, Surfactant assisted synthesis of the YVO4:Ln3+(Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties. Colloids and Surfaces A: Physicochem. Eng. Aspects 502, 139–146 (2016)

  20. 20.

    Y. H. Zhou and J. Lin (2005). Morphology control and luminescence properties of YVO4: Eu phosphors prepared by spray pyrolysis. Optical Materials 27, 1426–1432.

    CAS  Article  Google Scholar 

  21. 21.

    S. M. Rafiaei and M. Shokouhimehr (2019). Impact of process parameters on luminescence properties and nanostructure of YVO4: Eu phosphor. Mater Chem 229, 431–436.

    CAS  Google Scholar 

  22. 22.

    K. Riwotzki and M. Haase (1998). Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln = Eu, Sm, Dy). J. Phys. Chem. B 102, 10129–10135.

    CAS  Article  Google Scholar 

  23. 23.

    K. Riwotzki M. Haase, Colloidal YVO4:Eu and YP0.95V0.05O4:Eu nanoparticles: luminescence and energy transfer processes, J. Phys. Chem. B 105, 12709–12713 (2001)

  24. 24.

    A. Duragkar, A. Muley, N. R. Pawar, et al. (2019). Versatility of thermoluminescence materials and radiation dosimetry - A review. Luminescence 34, 656–665.

    Article  Google Scholar 

  25. 25.

    M. N. C. Harder, V. Arthur, and P.B. Arthur, Irradiation of Foods: Processing Technology and Effects on Nutrients: Effect of Ionizing Radiation on Food Components. Encyclopedia of Food and Health. (Elseviet Ltd., Brazil, 2016) 476–481.

  26. 26.

    International Centre of Diffraction Data (ICDD) 12 Campus Boulevard Newton Square, PA 19073–3273 U.S.A.

  27. 27.

    J. I. Langford and A. J. C. Wilson (1978). Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Cryst. 11, 102–113.

    CAS  Article  Google Scholar 

  28. 28.

    N. S. Gonçalves, J. A. Carvalho, Z. M. Lima, and J. M. Sasaki (2012). Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Mater. Lett. 72, 36–38.

    Article  Google Scholar 

  29. 29.

    S. Enzo, G. Fagherazzi, A. Benedetti, and S. Polizzi (1988). A profile-fitting procedure for analysis of broadened X-ray diffraction peaks I. methodology. J Appl Crystallogr. 21, 543–549.

    Article  Google Scholar 

  30. 30.

    K. Binnemans (2015). Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1–45.

    CAS  Article  Google Scholar 

  31. 31.

    G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer Verlag, Berlin, 1994).

    Book  Google Scholar 

  32. 32.

    D. L. Dexter and J. H. Shulman (1954). Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063–1070.

    CAS  Article  Google Scholar 

  33. 33.

    T. J. Su, X. Mi, J. Sun, L. Yang, C. Hui, L. Lu, Z. Bai, and X. Zhang (2017). Tunable luminescence and energy transfer properties in YVO4:Bi3+, Eu3+ phosphors. J. Mater. Sci. 52, 782–792.

    CAS  Article  Google Scholar 

  34. 34.

    S. Shionoya, W. M. Yen, and H. Yamamoto, Phosphor Handbook, 2nd ed. (CRC Press, Boca Raton, 2007).

    Google Scholar 

  35. 35.

    D. L. Dexter (1953). A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 21, 836–850.

    CAS  Article  Google Scholar 

  36. 36.

    Y. Iso, S. Takeshita, and T. Isobe (2014). Effects of annealing on the photoluminescence properties of citrate-capped YVO4:Bi3+, Eu3+ nanophosphor. J. Phys. Chem. C 118, 11006–11013.

    CAS  Article  Google Scholar 

  37. 37.

    C. Ronda, Luminescence. From Theory to Applications, 1st. ed. (Wiley-VCH, Germany, 2008)

  38. 38.

    J. C. De Mello, H. F. Wittmann, and R. H. Friend (1997). An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 9, 230–232.

    Article  Google Scholar 

  39. 39.

    S. Leyre, E. Coutino-Gonzalez, J. J. Joos, et al. (2014). Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup. Rev Sci Instrum. 85, 1231151–1231159.

    Article  Google Scholar 

  40. 40.

    S. Möller, A. Hoffmann, D. Knaut, J. Flottmann, and T. Jüstel (2015). Determination of vis and NIR quantum yields of Nd3+-activated garnets sensitized by Ce3+. J. Lumin. 158, 365–370.

    Article  Google Scholar 

  41. 41.

    R. Hoffmann, Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures, (Wiley-VCH, 1989)

  42. 42.

    S. McKeever (1984). Thermoluminescence in quartz and silica. Radiat. Prot. Dosim. 8, 81–98.

    CAS  Article  Google Scholar 

  43. 43.

    G. Kitis, J. Gomez-Ros, and J. Tuyn (1998). Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. J. Phys. D Appl. Phys. 31, 2636.

    CAS  Article  Google Scholar 

  44. 44.

    R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific Publishers, 1997)

  45. 45.

    D. Jia and W. M. Yen (2003). Trapping Mechanism Associated with Electron Delocalization and Tunneling of CaAl2 O 4: Ce3 +, A Persistent Phosphor. J. Electrochem. Soc. 150, H61–H65.

    CAS  Article  Google Scholar 

  46. 46.

    A. M. Sadek, H. M. Eissa, A. M. Basha, and G. Kitis (2014). Properties of the thermoluminescence glow peaks simulated by the interactive multiple-trap system (IMTS) model. Phys. Status Solidi B. 252, 721–729 and references therein.

    Article  Google Scholar 

  47. 47.

    R. Chen and S. McKeever, Theory of Thermoluminescence and related phenomena (World Scientific Publishing Co (Pte. Ltd., Singapore, 1997).

    Book  Google Scholar 

Download references


Financial support for this research, Granted by UNAM-PAPIIT (IT101416 and IN114217), is gratefully acknowledged.

Author information



Corresponding authors

Correspondence to A. Fernández-Osorio or R. Redón.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 538 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández-Osorio, A., Redón, R., Medina-Pérez, J. et al. Photoluminescence and Thermoluminescence Properties of Nanophosphors, YVO4:Eu3+ and YVO4:Eu3+:Dy3+. J Clust Sci (2021).

Download citation


  • Ceramics
  • Yttrium vanadate
  • Eu3+
  • Dy3+
  • Optical properties
  • Phosphors
  • Thermoluminescence