Synthesis, Characterization and Evaluation of Antioxidant and Cytotoxic Potential of Annona muricata Root Extract-derived Biogenic Silver Nanoparticles

Abstract

Eco-friendly synthesis of biogenic silver nanoparticles (AgNPs) employing plants is becoming increasingly attractive for biomedical applications including cancer diagnosis and treatment. The present study deals with the biosynthesis of AgNPs using root extract from Annona muricata (AMR), optimization of physico-chemical parameters for the effective synthesis and evaluation of their antioxidant and cytotoxic potential. UV–Vis / FTIR spectroscopy, XRD, FESEM and EDX techniques confirmed the surface plasmon resonance at 440 nm of the crystalline, spherical AgNPs capped with phytoconstituents. AMRAgNPs exhibited strong antioxidant activity also showed selective cytotoxicity against HCT116, without affecting growth of normal human lymphocytes and erythrocytes. Light, fluorescence and scanning electron microscopy revealed apoptosis-related cytomorphological alterations and increase in ROS levels whilst clonogenic assay confirmed reduction in colony formation capacity in AMRAgNPs treated cells. Flow cytometric analysis revealed increase in the sub-G1cell population indicative of apoptosis induction. The expression profile of the apoptosis-associated genes, PUMA, caspase-3, -8, -9, Bax and Bcl-2 obtained through qRT-PCR, combined with the presence of p53 and p21, cleaved PARP, caspase-3, -9, on western blots unambiguously confirmed occurrence of mitochondrial apoptosis. The present study highlights the selective apoptogenic activity of the A.muricata root extract-derived AgNPs which can serve as a potent anticancer agent for colon cancer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    S. Anjum, B. A. Haider, and Z. S. Khan (2016). Park. J. Bot 48, 1731–1760.

    CAS  Google Scholar 

  2. 2.

    R. Ranganathan, S. Madanmohan, A. Kesavan, G. Baskar Y. Ramia, Krishnamoorthy, R. Santosham, D. Ponraju, S.R. Kumar, G. Venkatraman (2012). Int. J. Nanomed 7, 1043–1060.

  3. 3.

    L. Pang, C. Zhang J. Qin, l. Han, R. Li, C. Hong, H. He, J. Wang (2017). Drug Delivery 24, 83–91.

  4. 4.

    H. Liang, B. Zhou, J. Li, X. Liu Z. Deng, B. Li (2018). J. Agric. Food Chem 66, 6897−6905.

  5. 5.

    V. Kumar, S. Palazzolo, S. Bayda, G. Corona, and G. Toffoli (2016). Rizzolio. Theranostics 6, 710–725.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    R. Sebastian (2017). J Cancer Prev Curr Res 8, 00265.

    Article  Google Scholar 

  7. 7.

    A. Udomprasert and T. Kangsamaksin (2017). Cancer Science 108, 1535–1543.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    B. Baruwati, V. Polshettiwar, and R. Varma (2009). Green Chemistry 11, 926–930.

    CAS  Article  Google Scholar 

  9. 9.

    M. Popescu, A. Velea, and A. Lorinczi (2010). Dig J Nanomater Bios 5, 1035–1040.

    Google Scholar 

  10. 10.

    A. S. Gurav, T. Kodas, L. M. Wang, E. I. Kauppinen, and J. Joutsensaari (1994). Chem. Phys. Lett 218, 304–308.

    CAS  Article  Google Scholar 

  11. 11.

    E.Abbasi, M. Milani, S.F. Aval, M. Kouhi, A. Akbarzadeh, H.T. Nasrabadi, P. Nikasa, S.W. Joo, Y.Hanifepour, K. Nejati-Koshki, M. Samiei (2014). Crit Rev Microbio l, 1–8.

  12. 12.

    S. Ahmed, M. Ahmed, B. L. Swami, and S. Ikram (2016). J. Adv. Res 7, 17–28.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    S. O. Adewole and E. A. Caxton-Martins (2006). Afr. J. Biomed. Res 9, 173–187.

    Google Scholar 

  14. 14.

    A. Mishra, N. K. Kaushik, M. Sardar, and D. Sahal (2013). Coll Surf B 111, 713–718.

    CAS  Article  Google Scholar 

  15. 15.

    J. Arroyo, M. Prashad, Y. Vásquez, E. Li, and G. Tomás (2005). Rev. Perú. Med. Exp. Salud Publica 22, 247–253.

    Google Scholar 

  16. 16.

    Y. Gavamukulya, F. Abou-Elella, F. Wamunyokoli, and H. AEl-Shemy, (2014). Asian Pac. J. Trop. Med 7, S355–S363.

    CAS  Google Scholar 

  17. 17.

    V. C. George, D. R. N. Kumar, P. K. Suresh, and R. A. Kumar (2015). J Food Sci Technol 52, 2328–2335.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    S. Z. Moghadamtousi, E. Rouhollahi, M. Hajrezaie, H. Karimian, M. A. Abdulla, and H. A. Kadir (2015). Int J Surg 18, 110–117.

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    A. Coria-T´ellez, E. Montalvo-Gonzalez, E. Yahia, E. Obledo- V´azquez (2016). Arab J Chem. http: //dx. doi. org/10. 1016/j. arabjc. 2016. 01. 004.

  20. 20.

    Y. Gavamukulya, E. N. Maina, F. Wamunyokoli, A. M. Meroka, E. S. Madivoli, H. A. El-Shemy, and G. Magoma (2019). BJI 23, 1–18.

    Article  CAS  Google Scholar 

  21. 21.

    R. Vivek, R. Thangam, K. Muthuchelian, P. Gunasekaran, K. Kaveri, and S. Kannan (2012). Process Biochem 47, 2405–2410.

    CAS  Article  Google Scholar 

  22. 22.

    C. Dipankar and S. Murugan (2012). Colloids Surf B 98, 112–119.

    CAS  Article  Google Scholar 

  23. 23.

    S. Gupta and J. Prakash (2009). Plants Foods Hum Nutr 64, 39–45.

    CAS  Article  Google Scholar 

  24. 24.

    R. Fu, Y. T. Zhang, Y. R. Guo, Q. L. Huang, T. Peng, Y. Xu, L. Tang, and F. Chen (2013). J. Ethnopharmacol 147, 517–524.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    F. M. Awah and A. W. Verla (2010). J. Med. Plant. Res 4, 2479–2487.

    CAS  Article  Google Scholar 

  26. 26.

    S. K. Chung, T. Osawa, and S. Kawakishi (1997). Biosci. Biotech. Biochem 61, 118–123.

    CAS  Article  Google Scholar 

  27. 27.

    I. N. Chen, C. C. Ng, C. Y. Wang, Y. T. Shyu, and T. L. Chang (2008). Plants Foods Hum Nutr 63, 15–20.

    CAS  Article  Google Scholar 

  28. 28.

    T. Mossmann (1983). Immunol. Methods 65, 55–63.

    Article  Google Scholar 

  29. 29.

    N.A.P. Franken, H.M. Rodermond, J. Stap, J. Haveman, C.B. van (2006). Nature protocols 1, 2315–2319.

  30. 30.

    M. Jeyaraj, A. Renganathan, G. Sathishkumar, A. Ganapathi, K. Premkumar (2015). RSC.Adv 2, 2159.

  31. 31.

    P. Kuppusamy, S. J. A. Ichwan, P. H. A. Nur, W. S. Hidayati, I. Soundharrajan, N. Govindan, G. M. Pragas, and M. Y. Mashitah (2016). Biol Trace Elem Res 173, 297–305.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    M. Jeyaraj, G. Sathishkumar, G. Sivanandhan, D. MubarakAli, M. Rajesh, R. Arun, G. Kapildev, M. Manickavasagam, N. Thajuddin, K. Premkumar, and A. Ganapathi (2013). Colloids Surf. B 106, 86–92.

    CAS  Article  Google Scholar 

  33. 33.

    F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J. Seidman, J.A, Smith, K. Struhl (1992). JohnWiley &Sons, USA, 10.8.1–10.8.23.

  34. 34.

    J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, and X. Yang (2007). Nanotechnology 18, 105104–105114.

    Article  CAS  Google Scholar 

  35. 35.

    A. Bankar, B. Joshi, A. R. Kumar, and S. Zinjarde (2010). Colloids and Surfaces A:Physicochem. Eng. Aspects 368, 58–63.

    CAS  Article  Google Scholar 

  36. 36.

    B. S. Maria, A. Devadiga, V. S. Kodialbail, and M. B. Saidutta (2015). Appl Nanosci 5, 755–762.

    Article  CAS  Google Scholar 

  37. 37.

    G. Sathishkumar, C. Gobinath, K. Karpagam, V. Hemamalini, K. Premkumar, and S. Sivaramakrishnan (2012). Colloids Surf. B 95, 235–240.

    CAS  Article  Google Scholar 

  38. 38.

    R. Sukirtha, K. M. Priyanka, J. J. Antony, S. Kamalakkannan, R. Thangam, P. Gunasekaran, M. Krishnan, and S. Achiraman (2012). Process Biochem 47, 273–279.

    CAS  Article  Google Scholar 

  39. 39.

    H. M. M. Ibrahim (2015). J. Radiation Research and applied Sci 8, 265–275.

    Google Scholar 

  40. 40.

    S.M. Roopan, Rohit, G. Madhumiitha, A. A. Rahuman, C. Kamaraj, A.Bharathi (2013). Industrial Crops and Products 43, 631–635.

  41. 41.

    K. Sneha, M. Sathishkumar, S. Kim, and Y. S. Yun (2010). Process Biochem 45, 1450–1458.

    CAS  Article  Google Scholar 

  42. 42.

    S. Bhakya, S. Muthukrishnan, M. Sukumaran, and M. Muthukumar (2015). Appl Nanosci. https://doi.org/10.1007/s13204-015-0473-z.

    Article  Google Scholar 

  43. 43.

    S. S. Shankar, A. Ahmad, and M. Sastry (2003). Biotechnol. Prog 19, 1627–1631.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    D. Philip (2010). Phys E: Low-Dimensional Systems and Nanostructures 42, 1417–1424.

    CAS  Article  Google Scholar 

  45. 45.

    M. Ahamed, M. Khan, M. Siddiqui, M. S. AlSalhi, and S. A. Alrokayan (2011). Phys E Low Dimens Syst Nanostruct 43, 1266–1271.

    CAS  Article  Google Scholar 

  46. 46.

    M. Shanmugapriya, K. Varunkumar, J. Yogeswaran, V. Ravikumar, and B. Anandaraj (2020). Bioorganic Chemistry 95, 103451.

    Article  CAS  Google Scholar 

  47. 47.

    B. Hazra, S. Biswas, N. Mandal (2008).BMC Complement. Altern Med 8, 63.

  48. 48.

    P. Hochestein and A. S. Atallah (1988). Mutat Res 202, 363–375.

    Article  Google Scholar 

  49. 49.

    S. M. Nabavi, M. A. Ebrahimzadeh, S. F. Nabavi, M. Fazelian, and B. Eslami (2009). Pharmacognosy Mag 4, 123–127.

    Google Scholar 

  50. 50.

    C. D. Fernando and P. Soysa (2014). BMC Complement. Altern. Med 14, 395.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    S. J. P. Jacob, J. S. Finub, and A. Narayanan (2012). Colloids and Surfaces B: Biointerfaces 91, 212–214.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  52. 52.

    K. Vasanth, K. Ilango, R. Mohan Kumar, A. Agrawal, G.P. Dubey (2014). Colloid Surf B 117, 354–359.

  53. 53.

    C. Vergallo, E. Panzarini, D. Izzo, E. Carata, S. Mariano, A. Buccolieri, A. Serra, D. Manno, and L. Dini (2014). AIP.Conf. Proc. 1603, 78–85.

    CAS  Google Scholar 

  54. 54.

    R. Bhanumathi, K. Vimala, K. Shanthi, R. Thangaraj, and S. Kannan (2017). New J. Chem 41, 14466.

    CAS  Article  Google Scholar 

  55. 55.

    S. Varun and S. Sellappa (2014). Int J Pharm Pharm Sci 6, 528–531.

    Google Scholar 

  56. 56.

    C. A. Pieme, S. K. Guru, P. Ambassa, S. Kumar, B. Nagameni, J. Y. Ngogang, S. Bhushan, and A. K. Sexena (2013). BMC Complement Altern. Med 13, 223.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    D. Mukherje, P. Mamatha, K. Sumahitha, S.B. Rajesh, C.R. Vishnu, Patra (2015). J. Mater. Chem. B 3, 3820–3830.

  58. 58.

    K. Juarez-Moreno, E.B. Gonzalez, N. Giro´n-Vazquez, R.A. Cha´vez-Santoscoy, J.D. Mota-Morales, L.L. Perez-Mozqueda, M.R. Garcia-Garcia, A. Pestryakov, N. Bogdanchikova (2017). Human and Experimental Toxicology 36, 931–948.

  59. 59.

    D. Kovacs, N. Igaz, C. Keskeny, P. Bélteky, T. Tóth, , R. Gáspár, D. Madarász, Z. Rázga, Z. Kónya, M. Imre. Boros, M. Kiricsi (2016). Scientific reports 6, 27902.

Download references

Acknowledgements

The authors would like to thank the National Institute of Technology, Calicut, for use of EDX facility. Thanks are also due to our sister departments of Chemistry and Physics and Central Sophisticated Instruments Facility, University of Calicut, for allowing use of facilities to carry out FTIR, XRD and SEM analysis and Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram for allowing use of their FACS facility. VSS acknowledges financial support from Calicut University by way of Research fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. R. Manish Kumar.

Ethics declarations

Ethical Approval

The blood samples used for hemolytic assay and isolation of lymphocytes for lymphocyte culture and MTT assay was willingly self-donated. It may be noted that according to the Indian Council for Medical Research, New Delhi, India, Chapter-II, page no. 1-12, the ethical approval for this research was not deemed to be necessary. According to this guideline, proposals which present less than minimal risks are exempted from the ethical review process.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig.1

. Effect of physico-chemical parameters on synthesis of biogenic AMRAgNPs (a) plant extract concentration (b) silver nitrate concentration (TIF 1126 kb)

Fig.2

. UV-vis spectra of AMRAgNPs measured at (a) temperature (b) different time intervals (c) varying pH conditions (pH 4.0- 9.0) (TIF 5784 kb)

Fig.3

. Effect of AMRAgNPs on HCT 116 cells. Cell viability was measured by MTT method after 48 h treatment Data shown as mean ±SD of three independent experiments (***P≤0.001, **P≤ 0.01, *P≤0.05) (TIF 3225 kb)

Fig.4

. Cytotoxicity evaluation of AMR extracts/AMRAgNPs on HCT cell lines. Values represent mean ± S.D. of three experiments; p* < 0.05 (TIF 2497 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaniba, V.S., Aziz, A.A., Joseph, J. et al. Synthesis, Characterization and Evaluation of Antioxidant and Cytotoxic Potential of Annona muricata Root Extract-derived Biogenic Silver Nanoparticles. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-01981-1

Download citation

Keywords

  • Annona muricata
  • Silver nanoparticles
  • Colorectal carcinoma
  • Cytotoxicity
  • qRT-PCR