Efficient and Stable Co3O4/ZnO Nanocomposite for Photochemical Water Splitting


In this study, an efficient Co3O4/ZnO based composite was prepared by the low temperature aqueous chemical growth method for photoelectrochemical water splitting. Both ZnO and Co3O4 constituents are identified in the composite sample through X-ray diffraction technique. Scanning electron microscopy has shown the nanorod like morphology of ZnO with etched top surface. The energy dispersive spectroscopy has shown the presence of cobalt, oxygen and zinc as the main elements in the composite samples. The Co3O4/ZnO composite (with low content of cobalt chloride hexahydrate) shows a significant increase in the photocurrent density (3 mA/cm2 at 0.5 V vs Ag/AgCl, which is 10 times higher than the pristine ZnO). Importantly, a fast and stable photocurrent response is found at an illumination of 1 Sun of light. The superior performance of the Co3O4/ZnO composite system is attributed to the facile promotion of electron–hole charge carrier separation and favourable charge transport. Furthermore, the electrochemical impedance spectroscopy showed a small charge transfer resistance of 259.30 Ohms for the composite material and consequently a robust water splitting is obtained. The prepared composite is earth abundant, inexpensive and scalable, therefore it can be used for diverse applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    A. Fujishima and K. Honda (1972). Nature 238, 37–38.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    C. Du, X. Yang, M. T. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping, and D. Wang (2013). Angew. Chem. Int. Ed. 52, 12692–12695.

    CAS  Article  Google Scholar 

  3. 3.

    P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang (2014). Adv. Mater. 26, 2137–2184.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan (2003). Adv. Mater. 15, 353–389.

    CAS  Article  Google Scholar 

  5. 5.

    G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li (2010). Nano Lett. 10, 1088–1092.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    X. Zhang, et al. (2014). Sci. Rep. 4, 4596.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    R. Schölin, M. Quintana, E. M. J. Johansson, M. Hahlin, T. Marinado, A. Hagfeld, and H. Rensmo (2011). J. Phys. Chem. C 115, 19274–19279.

    Article  CAS  Google Scholar 

  8. 8.

    L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang (2003). Angew. Chem. Int. Ed. 42, 3031–3034.

    CAS  Article  Google Scholar 

  9. 9.

    Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu (2003). Nat. Mater. 2, 821–826.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu (2003). Appl. Phys. Lett. 83, 1689–1691.

    CAS  Article  Google Scholar 

  11. 11.

    J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi (2004). Adv. Mater. 16, 1661–1664.

    CAS  Article  Google Scholar 

  12. 12.

    L.-W. Sun, H.-Q. Shi, W.-N. Li, H.-M. Xiao, S.-Y. Fu, X.-Z. Cao, and Z.-X. Li (2012). J. Mater. Chem. 22, 8221–8227.

    CAS  Article  Google Scholar 

  13. 13.

    X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li (2009). Nano Lett. 9, 2331–2336.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    M. Shao, F. Ning, M. Wei, D. G. Evans, and X. Duan (2014). Adv. Funct. Mater. 24, 580–586.

    CAS  Article  Google Scholar 

  15. 15.

    A. Kudo and Y. Miseki (2009). Chem. Soc. Rev. 38, 253–278.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, J. Zhang, and Y. Lin (2012). J. Phys. Chem. C 116, 8888–8893.

    CAS  Article  Google Scholar 

  17. 17.

    J. S. Graciani, A. Nambu, J. Evans, J. A. Rodriguez, and J. F. Sanz (2008). J. Am. Chem. Soc. 130, 12056–12063.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    N. Kouklin (2008). Adv. Mater. 20, 2190–2194.

    CAS  Article  Google Scholar 

  19. 19.

    J. Zhang and W. Que (2010). Sol. Energy Mater. Sol. Cells 94, 2181–2186.

    CAS  Article  Google Scholar 

  20. 20.

    S. Phadke, J. Y. Lee, J. West, P. Peumans, and A. Salleo (2011). Adv. Funct. Mater. 21, 4691–4697.

    CAS  Article  Google Scholar 

  21. 21.

    P. Chen, L. Chen, S. Ge, W. Zhang, M. Wu, P. Xing, T. B. Rotamond, H. Lin, Y. Wu, and Y. He (2020). Int. J. Hydrog. Energy 45, 14354–14367.

    CAS  Article  Google Scholar 

  22. 22.

    Y. Chen, C. Zhao, S. Ma, P. Xing, X. Hu, Y. Wu, and Y. He (2019). Inorg. Chem. Front. 6, 3083–3092.

    CAS  Article  Google Scholar 

  23. 23.

    P. Xing, S. Wu, Y. Chen, P. Chen, X. Hu, H. Lin, L. Zhao, and L. Zhao (2019). ACS Sustain. Chem. Eng. 7, 12408–12418.

    CAS  Google Scholar 

  24. 24.

    P. Xing, P. Chen, Z. Chen, X. Hu, H. Lin, Y. Wu, L. Zhao, and Y. He (2018). ACS Sustain. Chem. Eng. 6, 14866–14879.

    CAS  Article  Google Scholar 

  25. 25.

    F. F. Abdi, L. Han, A. H. M. Smets, M. Zeman, B. Dam, and R. V. D. Krol (2013). Nat. Commun. 4, 2195.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Y. L. Lee, C. F. Chi, and S. Y. Liau (2010). Chem. Mater. 22, 922–927.

    CAS  Article  Google Scholar 

  27. 27.

    H. Li, C. Cheng, X. Li, J. Liu, C. Guan, Y. Y. Tay, and H. J. Fan (2012). J. Phys. Chem. C 116, 3802–3807.

    CAS  Article  Google Scholar 

  28. 28.

    W. Yu, J. Zhang, and T. Peng (2016). Appl. Catal. B 181, 220–227.

    CAS  Article  Google Scholar 

  29. 29.

    V. Etacheri, R. Roshan, and V. Kumar (2012). ACS Appl. Mater. Interfaces 4, 2717–2725.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    H. Zhang, J. Sun, V. L. Dagle, B. Halevi, A. K. Datye, and Y. Wang (2014). ACS Catal. 4, 2379–2386.

    CAS  Article  Google Scholar 

  31. 31.

    W. He, H. K. Kim, W. G. Wamer, D. Melka, J. H. Callahan, and J. J. Yin (2014). J. Am. Chem. Soc. 2014 (136), 750–757.

    Article  CAS  Google Scholar 

  32. 32.

    C. Eley, T. Li, F. Liao, S. M. Fairclough, J. M. Smith, G. Smith, and S. C. Tsang (2014). Angew. Chem. Int. Ed. 53, 7838–7842.

    CAS  Article  Google Scholar 

  33. 33.

    T. I. Lee, S. H. Lee, Y. D. Kim, W. S. Jang, J. Y. Oh, H. K. Baik, C. Stampfl, A. Soon, and J. M. Myoung (2012). Nano Lett. 12, 68–76.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    S. Shena, C. X. Kronawitter, J. Jiang, P. Guo, L. Guo, and S. S. Mao (2013). Nano Energy 2, 958–965.

    Article  CAS  Google Scholar 

  35. 35.

    L. Chen, R. Chen, H. Hu, and G. Li (2019). Mater. Lett. 242, 47–50.

    CAS  Article  Google Scholar 

  36. 36.

    N. A. M. Barakat, E. Ahmed, M. T. Amen, M. A. Abdelkareem, and A. A. Farghali (2018). Mater. Lett. 210, 317–320.

    CAS  Article  Google Scholar 

  37. 37.

    Y. Yang, W. Cheng, and Y. F. Cheng (2019). Appl. Surf. Sci. 476, 815–821.

    CAS  Article  Google Scholar 

  38. 38.

    M. Liao, J. Feng, W. Luo, Z. Wang, J. Zhang, Z. Li, T. Yu, and Z. Zou (2012). Adv. Funct. Mater. 22, 3066–3074.

    CAS  Article  Google Scholar 

  39. 39.

    G. Dong, H. Hu, X. Huang, Y. Zhang, and Y. Bi (2018). J. Mater. Chem. A 6, 21003.

    CAS  Article  Google Scholar 

  40. 40.

    A. C. Pradhan, T. Uyar, and A. C. S. Appl (2017). Mater. Interfaces 9, 35757–35774.

    CAS  Article  Google Scholar 

  41. 41.

    C. Ma, D. Wang, W. Xue, B. Dou, H. Wang, and Z. Hao (2011). Environ. Sci. Technol. 45, 3628–3634.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    H. Yang, Z. Jin, D. Liu, K. Fan, and G. Wang (2018). J. Phys. Chem. C 122, 10430–10441.

    CAS  Article  Google Scholar 

  43. 43.

    R. Tang, S. Zhou, Z. Yuan, and L. Yin (2017). Adv. Funct. Mater. 27, 1701102.

    Article  CAS  Google Scholar 

  44. 44.

    D. Cai, H. Huang, D. Wang, B. Liu, L. Wang, Y. Liu, Q. Li, T. Wang, and A. C. S. Appl (2014). Mater. Interfaces 6, 15905–15912.

    CAS  Article  Google Scholar 

  45. 45.

    X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, and J. Gong (2015). J. Am. Chem. Soc. 137, 8356–8359.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    H. Liu, C. Hu, H. Zhai, et al. (2017). RSC Adv. 7, 37220–37229.

    CAS  Article  Google Scholar 

  47. 47.

    C. Hao, W. Wang, R. Zhang, et al. (2018). Sol. Energy. Mater. Sol. Cells. 174, 132–139.

    CAS  Article  Google Scholar 

  48. 48.

    K. W. Satish, C. Rai, Y. Ding, J. K. Hou, and Z. L. Wang (2015). ACS Nano 9, 8.

    Google Scholar 

  49. 49.

    X. Liu, Q. Liu, P. Wang, Y. Liu, B. Huang, E. A. Rozhkova, Q. Zhang, Z. Wang, Y. Dai, and J. Lu (2018). Chem. Eng. J. 337, 480–487.

    CAS  Article  Google Scholar 

  50. 50.

    D. Hidalgo, R. Messina, A. Sacco, D. M. Sanfredi, S. Vankova, E. Garrone, G. Saracco, and S. Hernández (2014). Int. J. Hydrog. Energy 39, 21512–21522.

    CAS  Article  Google Scholar 

Download references


We extend our sincere appreciation to the Researchers Supporting Project number (RSP-2020/79) at King Saud University, Riyadh, Saudi Arabia.

Author information



Corresponding author

Correspondence to Zafar Hussain Ibupoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tahira, A., Ibupoto, Z.H., Nafady, A. et al. Efficient and Stable Co3O4/ZnO Nanocomposite for Photochemical Water Splitting. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-01980-2

Download citation


  • ZnO
  • Co3O4
  • Photoelectrochemical water splitting
  • Water oxidation