Abstract
Punicalagin is the most popular ellagitannin found in pomegranate husk and is well known to reduce the risk of cancer and cardiovascular diseases (CVDs). The present work describes a novel method for the preparation of nanoparticles of Punicalagin using pomegranate (Punica granatum) since the use of Punicalagin in bulk form is associated with many problems. In this study, nanoparticles of Punicalagin were synthesized, characterized using various techniques, and further evaluated for their antioxidant, antibacterial, and antiproliferative potential using HepG2 cancer cells. DLS analysis revealed that the average size of nanoparticles of Punicalagin was 87 nm, whereas SEM analysis confirmed spherical shaped nanoparticles with size ranging from 90 to 116 nm. HPLC studies confirmed the presence of Punicalagin in synthesized nanoparticles. The results also revealed that nanoparticles of Punicalagin were nearly four times more potent antioxidants than bulk and possessed an inhibition zone of about 13 mm. The response of antiproliferative assay showed that the nanoparticles of Punicalagin caused nearly 44% reduction while bulk form showed only a 15% reduction in cell viability of cancerous cells at 100 µg/mL. The study suggests a great potential for use of the herbal drug in nano form to treat cancer as compared to its bulk counterparts.
This is a preview of subscription content, access via your institution.









References
- 1.
M. Russo, C. Fanali, G. Tripodo, P. Dugo, R. Muleo, L. Dugo, L. De Gara, and L. Mondello (2018). Anal. Bioanal. Chem. https://doi.org/10.1007/s00216-018-0854-8.
- 2.
S. Sreekumar, H. Sithul, P. Muraleedharan, J. M. Azeez, and S. Sreeharshan (2014). BioMed. Res. Int. https://doi.org/10.1155/2014/686921.
- 3.
M. Aviram and M. Rosenblat (2013). Rambam Maimonides Med. J. https://doi.org/10.5041/RMMJ.10113.
- 4.
X. Lu: Incorporation of mushroom powder into cereal food products. Lincoln University (2018)
- 5.
N. M. Badawi, M. H. Teaima, K. M. El-Say, D. A. Attia, M. A. El-Nabarawi, and M. M. Elmazar (2018). Int. J. Nanomed. https://doi.org/10.2147/IJN.S154033.
- 6.
V. Sanna, I. A. Siddiqui, M. Sechi, and H. Mukhtar (2013). Cancer Lett. https://doi.org/10.1016/j.canlet.2012.11.037.
- 7.
A. B. Shirode, D. J. Bharali, S. Nallanthighal, J. K. Coon, S. A. Mousa, and R. Reliene (2015). Int. J. Nanomed. https://doi.org/10.2147/IJN.S65145.
- 8.
I. A. Siddiqui, V. M. Adhami, D. J. Bharali, B. B. Hafeez, M. Asim, S. I. Khwaja, N. Ahmad, H. Cui, S. A. Mousa, and H. Mukhtar (2009). Cancer Res. https://doi.org/10.1158/0008-5472.CAN-08-3978.
- 9.
M. Gera, R. Kumar, V. Jain, Adv. Sci. Eng. Med. (2015) https://doi.org/10.1166/asem.2015.1722
- 10.
A. Mehra, R. Narang, V. Jain, and S. Nagpal (2020). Eur. J. Integr. Med. https://doi.org/10.1016/j.eujim.2019.101014.
- 11.
E.A. Alamineh, Am. J. Appl. Chem. (2018) https://doi.org/10.11648/j.ajac.20180602.13
- 12.
J. Lu, K. Ding, and Q. Yuan (2008). Chromatographia. https://doi.org/10.1365/s10337-008-0699-y.
- 13.
P. M. Carvalho, M. R. Felício, N. C. Santos, S. Gonçalves, and M. M. Domingues (2018). Front. Chem. https://doi.org/10.3389/fchem.2018.00237.
- 14.
D. N. de Assis, V. C. F. Mosqueira, J. M. C. Vilela, M. S. Andrade, and V. N. Cardoso (2008). Int. J. Pharm. https://doi.org/10.1016/j.ijpharm.2007.08.002.
- 15.
K. Jores, W. Mehnert, M. Drechsler, H. Bunjes, C. Johann, and K. Mäder (2004). J. Controlled Release. https://doi.org/10.1016/j.jconrel.2003.11.012.
- 16.
G. Socrates: Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons, (2004)
- 17.
R. Bhargava and I. W. Levin (2001). Anal. Chem. https://doi.org/10.1021/ac010380m.
- 18.
M. Piecha, M. Sarakha, P. Trebše, and D. Kočar (2010). Environ. Chem. Lett. https://doi.org/10.1007/s10311-009-0207-0.
- 19.
M. Balouiri, M. Sadiki, and S. K. Ibnsouda (2016). J. Pharm. Anal. https://doi.org/10.1016/j.jpha.2015.11.005.
- 20.
S.S. Dahham, M.N. Ali, H. Tabassum, M. Khan, Am. Eurasian J. Agric. Environ. Sci. (2010)
- 21.
J. Jacob, P. Lakshmanapermalsamy, R. Illuri, D. Bhosle, G.K. Sangli, D. Mundkinajeddu, Pharmacognosy Res. (2018)
- 22.
D.D. Sylvie, P.C. Anatole, B.P. Cabral, P.B. Veronique, Asian Pac. J. Trop. Biomed. (2014) https://doi.org/10.12980/APJTB.4.201414B168
- 23.
L. J. Lalitha, T. J. Sales, P. P. Clarance, P. Agastian, Y. Kim, A. Mahmoud, S. E. Mohamed, J. Tack, S. Na, and H. Kim (2020). J. King Saud Univ.-Sci. https://doi.org/10.1016/j.jksus.2019.11.022.
- 24.
M.F. Abu Bakar, N.E. Ahmad, M. Suleiman, A. Rahmat, A. Isha, Biomed Res Int. (2015) https://doi.org/10.1155/2015/916902
- 25.
W. Sajjad, M. Sohail, B. Ali, A. Haq, G. Din, M. Hayat, I. Khan, M. Ahmad, S. Khan, Mycopath. (2015) https://doi.org/10.21786/bbrc/12.4/38
- 26.
A. Aloqbi, U. Omar, M. Yousr, M. Grace, M. A. Lila, and N. Howell (2016). Nat. Sci. https://doi.org/10.4236/ns.2016.86028.
- 27.
I. Khalil, W.A. Yehye, A.E. Etxeberria, A.A. Alhadi, S.M. Dezfooli, N.B.M. Julkapli, W.J. Basirun, A. Seyfoddin, Antioxidants. (2020)
- 28.
N. Panth, B. Manandhar, K.R. Paudel, Phytother. Res. (2017)
- 29.
B. Aribi, S. Zerizer, Z. Kabouche, I. Screpanti, and R. Palermo (2016). Food Agric. Immunol. https://doi.org/10.1080/09540105.2015.1104654.
- 30.
T. Ghazanfari, M. Naseri, J. Shams, B. Rahmati, Food Agric. Immunol. (2013)
- 31.
V.R. Lombardi, I. Carrera, R. Cacabelos, Evid.-Based Complement. Altern. Med. (2017)
- 32.
J. Li, G. Wang, C. Hou, J. Li, Y. Luo, B. Li, Food Agric. Immunol. (2019)
Acknowledgements
This research is supported by Amity University, Noida, Uttar Pradesh, and is used by Ms. Akansha Mehra as a part of her Ph.D. program. We would also like to show our gratitude to Dr. Ashok K Chauhan, Founder President, Amity University for his continuous encouragement and support. We are thankful to our host institution also for providing us with resources and instrumentation to carry out this study.
Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Author information
Affiliations
Contributions
AM: Writing-original draft, Writing-review &editing, Methodology, Data Curation. SC: Methodology, Data Analysis, Data Validation, Provision of resources, Visualization. VKJ: Data Validation, Provision of resources, Conceptualization. SN: Supervision, Conceptualization, Investigation of Methodology, Writing-editing, Data Validation, Visualization.
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mehra, A., Chauhan, S., Jain, V.K. et al. Nanoparticles of Punicalagin Synthesized from Pomegranate (Punica Granatum L.) with Enhanced Efficacy Against Human Hepatic Carcinoma Cells. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-01979-9
Received:
Accepted:
Published:
Keywords
- Punicalagin nanoparticles (PCN)
- Punica granatum
- Antibacterial
- Antioxidant
- HepG2 cancer cells
- In-vitro antiproliferative activity