A Facile Approach Based on Functionalized Silver Nanoparticles as a Chemosensor for the Detection of Paraquat

Abstract

In this study, a simple approach was developed based on imidacloprid stabilized silver nanoparticle (Imida-AgNPs) for the sensitive detection of paraquat pesticide. Experimental parameters were optimized for the synthesis of the proposed sensor. Imida-AgNPs, synthesized under the optimized reaction condition were characterized by UV–Vis spectrophotometer, Fourier transform infrared (FT-IR) spectroscopy and atomic force microscopy (AFM). The Imida-AgNPs were spherical in shape with an average size of 40–70 nm. The stability of Imida-AgNPs was checked towards changes in temperature, time, pH, and salinity. The synthesized Imida-AgNPs were tested as a colorimetric sensor to detect a trace amount of paraquat for the first time. The developed sensor was green, simple, selective and economical. The calibration curve for detection of paraquat was found linear over the concentration range of 20–180 µM. The standard deviation (SD) was found to be 0.0019 µM with relative standard deviation (RSD) of 0.027%. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 6.27 µM and 19 µM respectively. Importantly, the sensor was successfully employed for the detection of paraquat in real samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    F. Laghrib, M. Bakasse, S. Lahrich, and M. El Mhammedi (2020). Mater Sci Eng C 107, 110349.

    CAS  Article  Google Scholar 

  2. 2.

    R. D. Oliveira, J. Duarte, A. S. Navarro, F. Remiao, M. Bastos, and F. Carvalho (2008). Critic Rev Toxicol 38, 13–71.

    Article  CAS  Google Scholar 

  3. 3.

    S. Igbedioh (1991). Arch Environ Health 46, 218–224.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Z. E. Suntres (2018). Fitoterapia 131, 160–167.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    T. Kanchan, S. M. Bakkannavar, and P. R. Acharya (2015). Toxicol Int 22, 30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    A. Jain, K. K. Verma, and A. Townshend (1993). Analytica Chimica Acta 284, 275–279.

    CAS  Article  Google Scholar 

  7. 7.

    S. Wang, L. Zhang, X. Wang, Z. Wang, C. Wen, J. Ma, Z. Gao, and L. Hu (2016). Int J Clin Exp Med 9, 21514–21520.

    CAS  Google Scholar 

  8. 8.

    Y. C. Tsao, Y. C. Lai, H. C. Liu, R. H. Liu, and D. L. Lin (2016). J Anal Toxicol 40, 427–436.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    B. Spangenberg (2012). JPC 25, 262–268.

    Google Scholar 

  10. 10.

    A. P. Vu, T. N. Nguyen, T. T. Do, T. H. Doan, T. H. Ha, T. T. Ta, H. L. Nguyen, P. C. Hauser, T. A. H. Nguyen, and T. D. Mai (2017). J Chromatogr B 1060, 111–117.

    CAS  Article  Google Scholar 

  11. 11.

    K. Usui, E. Minami, Y. Fujita, H. Kobayashi, T. Hanazawa, Y. Kamijo, and M. Funayama (2019). J Pharmacol Toxicol Methods 100, 106610.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    S. Lahrich, H. Hammani, W. Boumya, A. Loudiki, A. Farahi, M. Achak, M. Bakasse, and M. El Mhammedi (2016). Electroanalysis 28, 1012–1022.

    CAS  Article  Google Scholar 

  13. 13.

    Z. Zhao, F. Zhang, and Z. Zhang (2018). Spectrochimica Acta Part A 199, 96–101.

    CAS  Article  Google Scholar 

  14. 14.

    K. Shrivas, S. Sahu, B. Sahu, R. Kurrey, T. K. Patle, T. Kant, I. Karbhal, M. L. Satnami, M. K. Deb, and K. K. Ghosh (2019). J Mol Liquids 275, 297–303.

    CAS  Article  Google Scholar 

  15. 15.

    D. Xiong and H. Li (2008). Nanotechnology 19, 465502.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    T. M. Tolaymat, A. M. El Badawy, A. Genaidy, K. G. Scheckel, T. P. Luxton, and M. Suidan (2010). Sci Total Environ 408, 999–1006.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    S. Marin, G. Mihail Vlasceanu, R. Elena Tiplea, I. Raluca Bucur, M. Lemnaru, M. Minodora Marin, and A. Mihai Grumezescu (2015). Curr Topics Med Chem 15, 1596–1604.

    CAS  Article  Google Scholar 

  18. 18.

    A. Haider and I. K. Kang (2015). Adv Mater Sci Eng 2015, 165257.

    Article  Google Scholar 

  19. 19.

    S. Ali, A. S. Sharma, W. Ahmad, M. Zareef, M. M. Hassan, A. Viswadevarayalu, T. Jiao, H. Li, and Q. Chen (2020). Critic Rev Anal Chem 3, 1–28.

    Google Scholar 

  20. 20.

    C. Rao, G. Kulkarni, P. J. Thomas, and P. P. Edwards (2002). Chemistry 8, 28–35.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    S. Bruzzone, M. Malvaldi, G. P. Arrighini, and C. Guidotti (2005). J Phys Chem B 109, 3807–3812.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    D. Xiong, M. Chen, and H. Li (2008). Chem Commun 7, 880–882.

    Article  Google Scholar 

  23. 23.

    X. H. N. Xu, W. J. Brownlow, S. V. Kyriacou, Q. Wan, and J. J. Viola (2004). Biochemistry 43, 10400–10413.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    S. J. Huo, X. K. Xue, Q. X. Li, S. F. Xu, and W. B. Cai (2006). J. Phys. Chem. B 110, 25721–25728.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    L. Hua, J. Chen, L. Ge, and S. N. Tan (2007). J Nanoparticle Res 9, 1133–1138.

    CAS  Article  Google Scholar 

  26. 26.

    S. T. Dubas and V. Pimpan (2008). Talanta 76, 29–33.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Y. Mishra, S. Mohapatra, D. Kabiraj, B. Mohanta, N. Lalla, J. Pivin, and D. Avasthi (2007). Scripta Materialia 56, 629–632.

    CAS  Article  Google Scholar 

  28. 28.

    P. Vasileva, B. Donkova, I. Karadjova, and C. Dushkin (2011). Colloids Surf A 382, 203–210.

    CAS  Article  Google Scholar 

  29. 29.

    Y. He, B. Xu, W. Li, and H. Yu (2015). J Agric Food Chem 63, 2930–2934.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    A. Elbert, B. Becker, J. Hartwig, and C. Erdelen, Pflanzenschutz-Nachrichten Bayer (Bayer Print, Leverkusen, 1991).

    Google Scholar 

  31. 31.

    S. O. Duke, J. J. Menn and J. R. Plimmer, ACS Publications, Washington (1993).

  32. 32.

    Z. Rafiq, R. Nazir, M. R. Shah, and S. Ali (2014). J Environ Chem Eng 2, 642–651.

    CAS  Article  Google Scholar 

  33. 33.

    M. R. Shah, S. Ali, M. Ateeq, S. Perveen, S. Ahmed, M. F. Bertino, and M. Ali (2014). New J Chem 38, 5633–5640.

    CAS  Article  Google Scholar 

  34. 34.

    S. Ali, M. Bacha, M. R. Shah, W. Shah, K. Kubra, A. Khan, M. Ahmad, A. Latif, and M. Ali (2020). Biotechnol Appl Biochem. https://doi.org/10.1002/bab.2018.

    Article  PubMed  Google Scholar 

  35. 35.

    S. Ali, S. Perveen, M. Ali, M. R. Shah, E. Khan, A. S. Sharma, H. Li, and Q. Chen (2019). J Clust Sci 31, 1–11.

    Google Scholar 

  36. 36.

    S. Ali, S. Perveen, M. Ali, T. Jiao, A. S. Sharma, H. Hassan, S. Devaraj, H. Li, and Q. Chen (2020). Mater Sci Eng C 108, 110421.

    CAS  Article  Google Scholar 

  37. 37.

    Y. Harada, G. S. Girolami, and R. G. Nuzzo (2004). Langmuir 20, 10878–10888.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    K. Wagers, T. Chui, and S. Adem (2014). IOSR J Appl Chem 7, 15–20.

    Article  CAS  Google Scholar 

  39. 39.

    C. Levard, S. Mitra, T. Yang, A. D. Jew, A. R. Badireddy, G. V. Lowry, and G. E. Brown Jr. (2013). Environ Sci Technol 47, 5738–5745.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    S. Ali, S. Perveen, M. R. Shah, M. Zareef, M. Arslan, S. Basheer, S. Ullah, and M. Ali (2020). J Nanoparticle Res 22, 1–12.

    Article  CAS  Google Scholar 

  41. 41.

    S. F. Yuan, Z. J. Guan, W. D. Liu, and Q. M. Wang (2019). Nat Commun 10, 1–7.

    Article  CAS  Google Scholar 

  42. 42.

    J. V. Rohit and S. K. Kailasa (2014). J Nanoparticle Res 16, 2585.

    Article  CAS  Google Scholar 

  43. 43.

    G. Gusrizal, S. J. Santosa, E. S. Kunarti, and B. Rusdiarso (2019). Indonesian J Chem 2, 102–111.

    Google Scholar 

  44. 44.

    S. Yuttakovit, T. Santiwat, K. Pratumyot, K. Srikittiwanna, M. Sukwattanasinitt, and N. Niamnont (2020). J Photochem Photobiol A 397, 112570.

    CAS  Article  Google Scholar 

  45. 45.

    H. Li, D. X. Chen, Y. L. Sun, Y. B. Zheng, L. L. Tan, P. S. Weiss, and Y. W. Yang (2013). J Am Chem Soc 135, 1570–1576.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    G. Gusrizal, S. J. Santosa, E. S. Kunarti, and B. Rusdiarso (2020). Indonesian J Chem 20, 688–696.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to HEJ, ICCBS, University of Karachi Pakistan and Department of Chemistry University of Malakand for instrumental availability.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mumtaz Ali.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Shah, M.R., Hussain, S. et al. A Facile Approach Based on Functionalized Silver Nanoparticles as a Chemosensor for the Detection of Paraquat. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-01978-w

Download citation

Keywords

  • Silver nanoparticles
  • Pesticide
  • Imidacloprid
  • Nanosensor
  • Paraquat dichloride