The Planar Sc3NC Cluster Inside C86 and C88 Fullerenes: A Theoretical Study

Abstract

Density functional calculations have been performed to explore the possible structures of Sc3NC@C86 and Sc3NC@C88 metallofullerenes. Ten lowest energy isomers of C866− and six lowest energy isomers of C886− are selected as possible host cages for encapsulating Sc3NC cluster. The results reveal that four IPR-obeying Sc3NC@D3(63761)-C86, Sc3NC@C2V(63751)-C86, Sc3NC@D2(81738)-C88, and Sc3NC@Cs(81735)-C88 molecules are stable both kinetically and thermodynamically. The inner Sc3NC cluster adopts a planar configuration inside the fullerene C86 and C88 cages, similar to the reported Sc3NC@Ih(7)-C80 and Sc3NC@C2(22010)-C78. Furthermore, the infrared spectra have also been explored to help future experimental characterization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    S. F. Yang, T. Wei, and F. Jin (2017). Chem. Soc. Rev. 46, 5005.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    A. A. Popov, S. F. Yang, and L. Dunsch (2013). Chem. Rev. 113, 5989.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Y. Chai, T. Guo, C. M. Jin, R. E. Haufler, L. P. F. Chibante, J. Fure, L. H. Wang, J. M. Alford, and R. E. Smalley (1991). J. Phys. Chem. 95, 7564.

    CAS  Article  Google Scholar 

  4. 4.

    X. Lu, T. Akasaka, and S. Nagase (2013). Acc. Chem. Res. 46, 1627.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    J. Zhang, S. Stevenson, and H. C. Dorn (2013). Acc. Chem. Res. 46, 1548.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    S. Stevenson, M. A. Mackey, M. A. Stuart, J. P. Phillips, M. L. Easterling, C. J. Chancellor, M. M. Olmstead, and A. L. Balch (2008). J. Am. Chem. Soc. 130, 11844.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    L. Dunsch, S. F. Yang, L. Zhang, A. Svitova, S. Oswald, and A. A. Popov (2010). J. Am. Chem. Soc. 132, 5413.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    M. N. Chaur, F. Melin, A. L. Ortiz, and L. Echegoyen (2009). Angew. Chem. Int. Ed. 48, 7514.

    CAS  Article  Google Scholar 

  9. 9.

    A. Rodríguez-Fortea, A. L. Balch, and J. M. Poblet (2011). Chem. Soc. Rev. 40, 3551.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  10. 10.

    S. Stevenson, G. Rice, T. Glass, K. Harich, F. Croner, M. R. Jordan, J. Craft, E. Hadju, R. Bible, M. M. Olmstead, K. Maitra, A. J. Fisher, A. L. Balch, and H. C. Dorn (1999). Nature 401, 55.

    CAS  Article  Google Scholar 

  11. 11.

    M. Krause, J. Wong, and L. Dunsch (2005). Chem. Eur. J. 11, 706.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    S. Yang and L. Dunsch (2005). J. Phys. Chem. B 109, 12320.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    M. Wolf, K. H. MPller, Y. Skourski, D. Eckert, P. Georgi, M. Krause, and L. Dunsch (2005). Angew. Chem. Int. Ed. 44, 3306.

    CAS  Article  Google Scholar 

  14. 14.

    M. N. Chaur, F. Melin, B. Elliott, A. J. Athans, K. Walker, B. C. Holloway, and L. Echegoyen (2007). J. Am. Chem. Soc. 129, 14826.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    M. N. Chaur, F. Melin, B. Elliott, A. Kumbhar, A. J. Athans, and L. Echegoyen (2008). Chem. Eur. J. 14, 4594.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    M. N. Chaur, F. Melin, J. Ashby, B. Elliott, A. Kumbhar, A. M. Rao, and L. Echegoyen (2008). Chem. Eur. J. 14, 8213.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    T. Wei, S. Wang, F. P. Liu, Y. Z. Tan, X. J. Zhu, S. Y. Xie, and S. F. Yang (2015). J. Am. Chem. Soc. 137, 3119.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    W. Fu, L. Xu, H. Azurmendi, J. Ge, T. Fuhrer, T. Zuo, J. Reid, C. Shu, K. Harich, and H. C. Dorn (2009). J. Am. Chem. Soc. 131, 11762.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    W. Fu, J. Zhang, H. Champion, T. Fuhrer, H. Azuremendi, T. Zuo, J. Zhang, K. Harich, and H. C. Dorn (2011). Inorg. Chem. 50, 4256.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    J. Zhang, D. W. Bearden, T. Fuhrer, L. Xu, W. Fu, T. Zuo, and H. C. Dorn (2013). J. Am. Chem. Soc. 135, 3351.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    T. S. Wang, L. Feng, J. Y. Wu, W. Xu, J. F. Xiang, K. Tan, Y. H. Ma, J. P. Zheng, L. Jiang, X. Lu, C. Y. Shu, and C. R. Wang (2010). J. Am. Chem. Soc. 132, 16362.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    J. Y. Wu, T. S. Wang, Y. H. Ma, L. Jiang, C. Y. Shu, and C. R. Wang (2011). J. Phys. Chem. C 115, 23755.

    CAS  Article  Google Scholar 

  23. 23.

    Y. Gao, F. Zhang, Q. Meng, X. Sun, and D. Wang (2013). Comput. Theor. Chem. 1014, 56.

    CAS  Article  Google Scholar 

  24. 24.

    Q. Y. Meng, X. Y. Sun, C. Y. Wang, and D. L. Wang (2014). Chem. Phys. Lett. 613, 24.

    CAS  Article  Google Scholar 

  25. 25.

    D. L. Wang, H. L. Xu, Z. M. Su, and G. Xin (2012). Phys. Chem. Chem. Phys. 14, 15099.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    A. A. Popov and L. Dunsch (2007). J. Am. Chem. Soc. 129, 11835.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    CAS  Article  Google Scholar 

  28. 28.

    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    CAS  Article  Google Scholar 

  29. 29.

    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09 Revision A.02 (Gaussian Inc, Wallingford, CT, 2009).

    Google Scholar 

  31. 31.

    P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes (Oxford University Press, Oxford, 1995).

    Google Scholar 

  32. 32.

    Z. Slanina, S. L. Lee, and L. Adamowicz (1997). Int. J. Quantum Chem. 63, 529.

    CAS  Article  Google Scholar 

  33. 33.

    G. Sun and M. Kertesz (2002). Chem. Phys. 276, 107.

    CAS  Article  Google Scholar 

  34. 34.

    Y. Miyake, T. Minami, K. Kikuchi, M. Kainosho, and Y. Achiba (2000). Mol. Cryst. Liq. Cryst. A 340, 553.

    CAS  Article  Google Scholar 

  35. 35.

    Z. Wang, H. Yang, A. Jiang, Z. Liu, M. M. Olmstead, and A. L. Balch (2010). Chem. Commun. 46, 5262.

    CAS  Article  Google Scholar 

  36. 36.

    T. M. Zuo, C. M. Beavers, J. C. Duchamp, A. Campbell, H. C. Dorn, M. M. Olmstead, and A. L. Balch (2007). J. Am. Chem. Soc. 129, 2035.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    M. N. Chaur, X. Aparicio-Angles, B. Q. Mercado, B. Elliott, A. Rodriguez-Fortea, A. Clotet, M. M. Olmstead, A. L. Balch, J. M. Poblet, and L. Echegoyen (2010). J. Phys. Chem. C 114, 13003.

    CAS  Article  Google Scholar 

  38. 38.

    M. Watanabe, D. Ishimaru, N. Mizorogi, M. Kiuchi, and J. Aihara (2005). J. Mol. Struct. (Theochem) 726, 11.

    CAS  Article  Google Scholar 

  39. 39.

    S. Stevenson, K. D. Arvola, M. Fahim, B. R. Martin, K. B. Ghiassi, M. M. Olmstead, and A. L. Balch (2016). Inorg. Chem. 55, 62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    S. Y. Xie, F. Gao, X. Lu, R. B. Huang, C. R. Wang, X. Zhang, M. L. Liu, S. L. Deng, and L. S. Zheng (2004). Science 304, 699.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    J. M. Campanera, C. Bo, and J. M. Poblet (2005). Angew. Chem. Int. Ed. 44, 7230.

    CAS  Article  Google Scholar 

  42. 42.

    M. N. Chaur, R. Valencia, A. Rodríguez-Fortea, J. M. Poblet, and L. Echegoyen (2009). Angew. Chem. Int. Ed. 48, 1425.

    CAS  Article  Google Scholar 

  43. 43.

    R. Valencia, A. Rodríguez-Fortea, and J. M. Poblet (2007). Chem. Commun. 112, 4161.

    Article  CAS  Google Scholar 

  44. 44.

    A. L. Svitova, A. A. Popov, and L. Dunsch (2013). Inorg. Chem. 52, 3368.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Liaoning Province, China (No. 20180550672).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong-Lai Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 10052 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, DL., Meng, QY. The Planar Sc3NC Cluster Inside C86 and C88 Fullerenes: A Theoretical Study. J Clust Sci (2021). https://doi.org/10.1007/s10876-021-01977-x

Download citation

Keywords

  • Density function theory
  • Endohedral fullerene
  • Sc3NC@C86
  • Sc3NC@C88
  • Stability
  • Infrared spectra