A Double-Layered {Cu9} Nanocage with Diacylhydrazine: Synthesis, Structure and Magnetic Properties


The reaction of a multidentate diacylhydrazine ligand N,N′-bis(2-hydroxy-3-naphthoyl)oxalylhydrazide (H6hnohz) with copper acetate in the presence of pyridine (Py), resulted in a novel Cu nanocluster, [CuII9(hnohz)3(Py)8]·7DMSO (1). This nanocluster consists of a {CuII4} and a {CuII5} cluster units, which were linked together by the coordination bonds between them owing to the Jahn–Teller effects of the CuII centers and flexible coordination modes of the hnohz6− ligands. The Py was found to act as not only the deprotonating reagent in the synthesis, but the peripheral ligand in molecular structure. Whether in {CuII4} or in {CuII5} unit, the CuII ions are approximatively coplanar. And the meaning planes of two units are just parallel. Thus 1 displays a double-layered cage-like skeleton that was rarely reported in previous literature. Variable temperature magnetic susceptibility measurement revealed dominate antiferromagnetic couplings between the CuII ions in the system of 1.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    X. Y. Zheng, X. J. Kong, Z. P. Zheng, L. S. Long, and L. S. Zheng (2018). Acc. Chem. Res.51, 517.

    CAS  PubMed  Google Scholar 

  2. 2.

    Y. X. Du, H. T. Sheng, D. Astruc, and M. Z. Zhu (2020). Chem. Rev.120, 526.

    CAS  PubMed  Google Scholar 

  3. 3.

    Z. Wang, H. F. Su, Y. Z. Tan, S. Schein, S. C. Lin, W. Liu, S. A. Wang, W. G. Wang, C. H. Tung, D. Sun, and L. S. Zheng (2017). Proc. Natl. Acad. Sci. USA114, 12132.

    CAS  PubMed  Google Scholar 

  4. 4.

    Y. K. Deng, H. F. Su, J. H. Xu, W. G. Wang, M. Kurmoo, S. C. Lin, Y. Z. Tan, J. Jia, D. Sun, and L. S. Zheng (2017). J. Am. Chem. Soc.138, 1328.

    Google Scholar 

  5. 5.

    Y. Fang, J. A. Powell, E. Li, Q. Wang, Z. Perry, A. Kirchon, X. Y. Yang, Z. F. Xiao, C. F. Zhu, L. L. Zhang, F. H. Huang, and H. C. Zhou (2019). Chem. Soc. Rev.48, 4707.

    CAS  PubMed  Google Scholar 

  6. 6.

    Y. Zhang, B. Ali, J. F. Wu, M. Guo, Y. Yu, Z. L. Liu, and J. K. Tang (2019). Inorg. Chem.58, 3167.

    CAS  PubMed  Google Scholar 

  7. 7.

    D. H. Ren, D. Qiu, C. Y. Pang, Z. J. Li, and Z. G. Gu (2015). Chem. Commun.51, 788.

    CAS  Google Scholar 

  8. 8.

    Y. Y. Zhou, H. F. Li, T. Y. Zhu, T. Gao, and P. F. Yan (2019). J. Am. Chem. Soc.141, 19634.

    CAS  PubMed  Google Scholar 

  9. 9.

    M. Niu, G. T. Yu, H. Guang, Y. W. Chen, X. G. Zhao, and X. R. Huang (2014). Inorg. Chem.53, 349.

    CAS  PubMed  Google Scholar 

  10. 10.

    M. Y. Takashi and N. M. Fujita (2012). J. Am. Chem. Soc.134, 162.

    Google Scholar 

  11. 11.

    A. C. Hani and D. J. Moussa (2012). Chem. Rev.112, 2015.

    Google Scholar 

  12. 12.

    Y. H. Wei, D. Sun, D. Q. Yuan, Y. J. Liu, Y. Zhao, X. Y. Li, S. N. Wang, J. M. Dou, X. P. Wang, A. Y. Hao, and D. F. Sun (2012). Chem. Sci.. https://doi.org/10.1039/c2sc20187a.

    Article  Google Scholar 

  13. 13.

    A. Stephenson, S. P. Argent, T. Riis-Johannessen, I. S. Tidmarsh, and M. D. Ward (2011). J. Am. Chem. Soc.133, 858.

    CAS  PubMed  Google Scholar 

  14. 14.

    Y. F. Bi, S. T. Wang, M. Liu, S. C. Du, and W. P. Liao (2013). Chem. Commun.49, 6785.

    CAS  Google Scholar 

  15. 15.

    M. Christine, V. BeaversAndrey, D. ProsverinJohn, R. CashionKim, A. Dunbar, and F. Richards (2013). Inorg. Chem.52, 1670.

    Google Scholar 

  16. 16.

    D. T. Geng, X. Han, Y. F. Bi, Y. C. Qin, Q. Li, L. L. Huang, K. Zhou, L. J. Song, and Z. P. Zheng (2018). Chem. Sci.9, 8535.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    P. Stephen, A. A. GreenawayMaria, C. Gimenez-LopezWilliam, L. H. NowellAndrei, N. KhlobystovAlexander, J. BlakeNeil, R. Champness, and M. Schröder (2012). J. Am. Chem. Soc.134, 55.

    Google Scholar 

  18. 18.

    Y. Zhou, X. Y. Zheng, J. Cai, Z. F. Hong, Z. H. Yan, X. J. Kong, Y. P. Ren, L. S. Long, and L. S. Zheng (2017). Inorg. Chem.56, 2037.

    CAS  PubMed  Google Scholar 

  19. 19.

    X. J. Kong, Y. L. Wu, L. S. Long, L. S. Zheng, and Z. P. Zheng (2009). J. Am. Chem. Soc.131, 6918.

    CAS  PubMed  Google Scholar 

  20. 20.

    G. M. Wang, J. Hua, S. D. Li, H. Jie, P. L. Wei, Z. H. Wang, and Z. Z. Bao (2016). Cryst. Growth Des.16, 2477.

    CAS  Google Scholar 

  21. 21.

    M. L. Fu, I. Issac, D. Fenske, and O. Fuhr (2010). Angew. Chem. Int. Ed.49, 6899.

    CAS  Google Scholar 

  22. 22.

    S. Bestgen, O. Fuhr, P. W. Roeskya, and D. Fenske (2016). Dalton Trans.45, 14907.

    CAS  PubMed  Google Scholar 

  23. 23.

    F. L. Liu, B. Kozlevčar, P. Strauch, G. L. Zhuang, L. Y. Guo, Z. Wang, and D. Sun (2015). Chem. Eur. J.21, 18847.

    CAS  PubMed  Google Scholar 

  24. 24.

    B. Q. Ji, M. Jagodič, H. Y. Ma, H. F. Su, Y. W. Li, C. H. Tung, and D. Sun (2018). New J. Chem.42, 17884.

    CAS  Google Scholar 

  25. 25.

    A. N. Bilyachenko, A. N. Kulakova, M. M. Levitsky, A. A. Petrov, A. A. Korlyukov, L. S. Shul’pina, V. N. Khrustalev, P. V. Dorovatovskii, A. V. Vologzhanina, U. S. Tsareva, I. E. Golub, E. S. Gulyaeva, E. S. Shubina, and G. B. Shul’pin (2017). Inorg. Chem.56, 4093.

    CAS  PubMed  Google Scholar 

  26. 26.

    L. F. Chen, J. Kang, H. Cui, Y. X. Wang, L. Liu, L. Zhang, and C. Y. Su (2015). Dalton Trans.44, 12180.

    CAS  PubMed  Google Scholar 

  27. 27.

    Q. T. He, X. P. Li, L. F. Chen, L. Zhang, W. Wang, and C. Y. Su (2013). ACS Catal.3, 1.

    CAS  Google Scholar 

  28. 28.

    I. A. Kühne, G. E. Kostakis, C. E. Anson, and A. K. Powell (2015). Chem. Commun.51, 2702.

    Google Scholar 

  29. 29.

    J. A. Sheikh, H. S. Jena, A. Adhikary, S. Khatua, and S. Konar (2013). Inorg. Chem.52, 9717.

    CAS  PubMed  Google Scholar 

  30. 30.

    Z. C. Shi, W. Chen, S. Z. Zhan, M. Li, M. Xie, Y. Y. Li, S. W. Ng, Y. L. Huang, Z. Y. Zhang, G. H. Ning, and D. Li (2020). Inorg. Chem. Front.7, 1437.

    CAS  Google Scholar 

  31. 31.

    A. Ghosh, R. W. Huang, B. Alamer, E. A. Hamad, M. N. Hedhili, O. F. Mohammed, and O. M. Bakr (2019). ACS Mater. Lett.1, 297.

    CAS  Google Scholar 

  32. 32.

    A. Stephenson, D. Sykes, and M. D. Ward (2013). Dalton Trans.42, 6756.

    CAS  PubMed  Google Scholar 

  33. 33.

    K. Wang, Z. L. Chen, H. H. Zou, K. Hu, H. Y. Li, Z. Zhang, W. Y. Sun, and F. P. Liang (2016). Chem. Commun.52, 8297.

    CAS  Google Scholar 

  34. 34.

    K. Wang, Z. L. Chen, H. H. Zou, S. H. Zhang, Y. Li, X. Q. Zhang, W. Y. Sun, and F. P. Liang (2018). Dalton Trans.47, 2337.

    CAS  PubMed  Google Scholar 

  35. 35.

    K. Wang, S. Tang, Z. B. Hu, H. H. Zou, X. L. Wang, S. H. Zhang, Y. Li, Z. L. Chen, and F. P. Liang (2018). RSC Adv.8, 6218.

    CAS  Google Scholar 

  36. 36.

    G. M. Sheldrick SHELX–2014: programs for crystal structure analysis (University of Göttingen, Göttingen, 2014).

    Google Scholar 

  37. 37.

    G. M. Sheldrick (2015). Acta Crystallogr. C71, 3.

    Google Scholar 

  38. 38.

    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Crystallogr.42, 339.

    CAS  Google Scholar 

  39. 39.

    L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2015). Acta Crystallogr. A71, 59.

    CAS  Google Scholar 

  40. 40.

    P. Ballester, A. I. Oliva, A. Costa, P. M. Deyà, A. Frontera, R. M. Gomila, and C. A. Hunter (2006). J. Am. Chem. Soc.128, 5560.

    CAS  PubMed  Google Scholar 

  41. 41.

    S. T. Wu, H. L. Tang, S. M. Lu, Q. Y. Ye, X. H. Huang, C. C. Huang, X. L. Hua, and S. T. Zheng (2014). CrystEngComm2014, (16), 9792.

    Google Scholar 

  42. 42.

    X. B. Li, G. M. Zhuang, X. Wang, K. Wang, and E. Q. Gao (2013). Chem. Commun.49, 1814.

    CAS  Google Scholar 

  43. 43.

    H. Yang, F. Cao, D. C. Li, S. Y. Zeng, Y. Song, and J. M. Dou (2015). Dalton Trans.44, 6620.

    CAS  PubMed  Google Scholar 

  44. 44.

    L. K. Thompsona and L. N. Dawe (2015). Coord. Chem. Rev.289, 13.

    Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Nos. 21961008 and 21771043) and the Guangxi Natural Science Foundation (No. 2018GXNSFAA138123).

Author information



Corresponding authors

Correspondence to Kai Wang or Shu-Ying Luo or Fu-Pei Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 222 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Xu, F., Qi, S. et al. A Double-Layered {Cu9} Nanocage with Diacylhydrazine: Synthesis, Structure and Magnetic Properties. J Clust Sci (2020). https://doi.org/10.1007/s10876-020-01838-z

Download citation


  • Cu nanocage
  • Diacylhydrazine
  • Magnetic properties