Synthesis and Structural Analysis of Novel Phosphonium Hexatungstate Complexes

Abstract

Sodium tungstate reacted with tetramethyl- and tetrabutyl-phosphonium bromide in presence of hydrochloric acid to afford two new phosphonium hexatungstate compounds ((CH3)4P)2W6O19, 1, and ((CH3CH2CH2CH2)4P)2W6O19, 2, respectively. Under similar conditions, sodium tungstate reacted with methyltriphenyl-, allyltriphenyl-, butyltriphenyl- and benzyltriphenyl-phosphonium bromides to yield four new phosphonium hexatungstate compounds (CH3Ph3P)2W6O19, 3, (CH2CHCH2Ph3P)2W6O19, 4, (CH3CH2CH2CH2Ph3P)2W6O19, 5, and (C6H5CH2Ph3P)2W6O19, 6, respectively. All six compounds appeared to be stable in air, and were structurally characterized by a combination of FTIR, elemental analyses, and single-crystal X-ray diffraction analyses. The steric effect of the phosphonium cation was investigated and found to cause no significant change on the average bond distances of the hexatungstate anion. The crystal structure analyses of these compounds showed that hexatungstate anions were isolated and the distance between the anions increases with increase in the bulkiness of the surrounding phosphonium cations. Moreover, thermal stability and heat absorption of all six compounds were evaluated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    M. T. Pope Heteropoly and Isopoly Oxometalates, 1st ed (Springer-Verlag, Berlin Heidelberg, 1983).

    Google Scholar 

  2. 2.

    E. Coronado, C. Gimenez-Saiz, and C. J. Gomez-Garcia (2005). Coord. Chem. Rev.249, 1776.

    CAS  Article  Google Scholar 

  3. 3.

    E. Coronado, S. Curreli, C. Gimenez-Saiz, C. J. Gomez-Garcia, and J. Roth (2005). Synth. Met.154, 241.

    CAS  Article  Google Scholar 

  4. 4.

    L. Xu, E. B. Wang, Z. Li, D. G. Kurth, X. G. Du, H. Y. Zhang, and C. Qin (2002). New J. Chem.26, 782.

    CAS  Article  Google Scholar 

  5. 5.

    D. L. Long and L. Cronin (2006). Chem. Eur. J.12, 3698.

    CAS  Article  Google Scholar 

  6. 6.

    M. V. Vasylyev and R. Neumann (2004). J. Am. Chem. Soc.126, 884.

    CAS  Article  Google Scholar 

  7. 7.

    R. Neumann, A. M. Khenkin, and I. Vigdergauz (2000). Chem. Eur. J.6, 875.

    CAS  Article  Google Scholar 

  8. 8.

    N. Mizuno, K. Yamaguchi, and K. Kamata (2005). Coord. Chem. Rev.249, 1944.

    CAS  Article  Google Scholar 

  9. 9.

    I. M. Mbomekalle, B. Keita, L. Nadjo, P. Berthet, K. I. Hardcastle, C. L. Hill, and T. M. Anderson (2003). Inorg. Chem.42, 1163.

    CAS  Article  Google Scholar 

  10. 10.

    S. Q. Liu, H. Mohwald, D. Volkmer, and D. G. Kurth (2006). Langmuir22, 1949.

    CAS  Article  Google Scholar 

  11. 11.

    S. Q. Liu, D. G. Kurth, H. Mohwald, and D. Volkmer (2002). Adv. Mater.14, 225.

    Article  Google Scholar 

  12. 12.

    S. Q. Liu, D. Volkmer, and D. G. Kurth (2004). Anal. Chem.76, 4579.

    CAS  Article  Google Scholar 

  13. 13.

    S. Q. Liu, D. G. Kurth, D. Volkmer (2002). Chem. Commun. 976.

  14. 14.

    V. Kalyani, V. S. V. Satyanarayana, V. Singh, C. P. Pradeep, S. Ghosh, S. K. Sharma, and K. E. Gonsalves (2015). Chem. Eur. J.21, 2250.

    CAS  Article  Google Scholar 

  15. 15.

    M. Sadakane and E. Steckhan (1998). Chem. Rev.98, 219.

    CAS  Article  Google Scholar 

  16. 16.

    L. Zhang, S. Li, C. J. Gómez-García, H. Ma, C. Zhang, H. Pang, and B. Li (2018). ACS Appl. Mater. Interfaces10, 31498.

    CAS  Article  Google Scholar 

  17. 17.

    Y. Hou, D. Chai, B. Li, H. Pang, H. Ma, X. Wang, and L. Tan (2019). ACS Appl. Mater. Interfaces11, 20845.

    CAS  Article  Google Scholar 

  18. 18.

    D. Chai, C. J. Gómez-García, B. Li, H. Pang, H. Ma, X. Wang, and L. Tan (2019). Chem. Eng. J.373, 587.

    CAS  Article  Google Scholar 

  19. 19.

    Y. Hou, H. Pang, L. Zhang, B. Li, J. Xin, K. Li, H. Ma, X. Wang, and L. Tan (2020). J. Power Sources446, 227319.

    CAS  Article  Google Scholar 

  20. 20.

    P. Gouzerh and A. Proust (1998). Chem. Rev.98, 77.

    CAS  Article  Google Scholar 

  21. 21.

    J. B. Strong, G. P. A. Yap, R. Ostrander, L. M. Liable-Sands, A. L. Rheingold, R. Thouvenot, P. Gouzerh, and E. A. Maatta (2000). J. Am. Chem. Soc.122, 639.

    CAS  Article  Google Scholar 

  22. 22.

    T. Yoshimura, A. Ishikawa, H. Okamoto, H. Miyazaki, A. Sawada, T. Tanimoto, and S. Okazaki (1991). Microelectron. Eng.13, 97.

    CAS  Article  Google Scholar 

  23. 23.

    J. C. Carls, P. Argitis, and A. Heller (1992). J. Electrochem. Soc.139, 786.

    CAS  Article  Google Scholar 

  24. 24.

    C. L. Hill, M. Kozik, J. Winkler, Y. Hou, C. M. Prosser-McCartha (1993). Photosensitive Metal-Organic Systems, 243.

  25. 25.

    L. Ni, G. Yang, C. Sun, G. Niu, Z. Wu, C. Chen, X. Gong, C. Zhou, G. Zhao, J. Gu, W. Ji, X. Huo, M. Chen, and G. Diao (2017). Mater. Today. Energy6, 53.

    Google Scholar 

  26. 26.

    D. T. Breslin and F. D. Saeva (1988). J. Org. Chem.53, 713.

    CAS  Article  Google Scholar 

  27. 27.

    M. Fournier (1990). Inorg. Synth.27, 80.

    Google Scholar 

  28. 28.

    G. M. Sheldrick Bruker/Siemens Area Detector Absorption Correction Program (Bruker Analytical X-ray System Inc, Madison, 1998).

    Google Scholar 

  29. 29.

    SHELXTL-6.10 “Program for Structure Solution, Refinement and Presentation” (Bruker Analytical X-ray System, Inc., Madison).

  30. 30.

    G. M. Sheldrick (2008). Acta Cryst. A64, 112.

    CAS  Article  Google Scholar 

  31. 31.

    P. G. Rickert, M. R. Antonio, M. A. Firestone, K. A. Kubatko, T. Szreder, J. F. Wishart, M. L. Dietz (2007). Dalton Trans., 529.

  32. 32.

    P. G. Rickert, M. R. Antonio, M. A. Firestone, K. A. Kubatko, T. Szreder, J. F. Wishart, and M. L. Dietz (2007). J. Phys. Chem. B111, 4685.

    CAS  Article  Google Scholar 

  33. 33.

    D. L. Long, E. Burkholder, and L. Cronin (2007). Chem. Soc. Rev.36, 105.

    CAS  Article  Google Scholar 

  34. 34.

    G. J. T. Cooper and L. Cronin (2009). J. Am. Chem. Soc.131, 8368.

    CAS  Article  Google Scholar 

  35. 35.

    S. Chakraborty, A. Keightley, V. Dusevich, Y. Wang, and Z. Peng (2010). Chem. Mater.22, 3995.

    CAS  Article  Google Scholar 

  36. 36.

    M. Parvez, P. M. Boorman, and N. Langdon (1998). Acta Cryst. C54, 608.

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon the work supported by the National Science Foundation and Center for Sustainable Materials Chemistry under Grant No. CHE-1102637.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sumit Saha or Douglas A. Keszler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10876_2020_1835_MOESM1_ESM.pdf

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 1439506-1439511 for compounds 16. Copies of this information may be obtained free of charge from, The Director, CCDC 12 Union Road, Cambridge CB2 1EZ, UK [fax: (int.code) +44(1223) 336-033 or e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk].

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Zakharov, L.N., Captain, B. et al. Synthesis and Structural Analysis of Novel Phosphonium Hexatungstate Complexes. J Clust Sci (2020). https://doi.org/10.1007/s10876-020-01835-2

Download citation

Keywords

  • Polyoxometalate complex
  • Inorganic cluster
  • X-ray diffraction
  • Phosphonium bromide
  • Sodium tungstate