Different Phase and Morphology Effect of Manganese Oxide on Electrochemical Performance for Supercapacitor Application

Abstract

Nanostructures of manganese oxides are a promising pseudocapacitive electrode material due to its eco-friendly, low cost, and intrinsically high capacity. In this work, we prepared monometallic manganese oxide Mn3O4, and MnO2 using a facile, one-step hydrothermal method at low processing temperature. The structural, morphological, elemental analysis of manganese oxide (Mn3O4 nanoparticles (NPs) and one-dimensional MnO2 nanowires (1-D NWs)) powders confirmed from XRD, TEM, SEM, and EDAX techniques. The prepared materials have the same crystal structure with different phase and morphology. The morphology information of prepared Mn3O4, MnO2 powders visualized from an electron microscope of TEM and SEM techniques as particle and wire type morphology. The electrochemical performance of fabricated individual Mn3O4 and MnO2 @ Ni foam electrodes exhibited specific capacitance around 182 and 243 F/g at a current density of 0.5 A/g from galvanostatic charge–discharge cycles measurement in presence of 1 M KOH compared with 0.5 M KOH electrolyte solution. Also, from these results, the morphology of MnO2 (NWs) has better specific capacitance than Mn3O4 (NPs) in 1 M KOH electrolyte solution.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Huang, F. Li, F. Dong, Y. X. Zhang, and L. L. Zhang (2015). J. Mater. Chem. A3, 21380.

    CAS  Article  Google Scholar 

  2. 2.

    X. Shi, S. Zhang, X. Chen, P. K. Chu, T. Tang, and E. Mijowska (2019). Int. J. Hydrogen Energy44, 13675.

    CAS  Article  Google Scholar 

  3. 3.

    M. A. A. Mohd Abdah, N. H. N. Azman, S. Kulandaivalu, and Y. Sulaiman (2020). Mater. Des.186, 108199.

    Article  Google Scholar 

  4. 4.

    A. R. Dehghani-Sanij, E. Tharumalingam, M. B. Dusseault, and R. Fraser (2019). Renew. Sustain. Energy Rev.104, 192.

    Article  Google Scholar 

  5. 5.

    A. Mayyas, D. Steward, and M. Mann (2019). Sustain. Mater. Technol.19, e00087.

    CAS  Google Scholar 

  6. 6.

    Z. Li, L. Cao, W. Chen, Z. Huang, and H. Liu (2019). Small15, 1.

    Google Scholar 

  7. 7.

    Q. Abbas, R. Raza, I. Shabbir, and A. G. Olabi (2019). J. Sci. Adv. Mater. Devices4, 341.

    Article  Google Scholar 

  8. 8.

    A. Afif, S. M. Rahman, A. Tasfiah Azad, J. Zaini, M. A. Islan, and A. K. Azad (2019). J. Energy Storage25, 100852.

    Article  Google Scholar 

  9. 9.

    R. Thangavel, A. G. Kannan, R. Ponraj, V. Thangavel, D. W. Kim, and Y. S. Lee (2018). J. Power Sources383, 102.

    CAS  Article  Google Scholar 

  10. 10.

    P. Nagaraju, A. Alsalme, A. Alswieleh, and R. Jayavel (2018). J. Electroanal. Chem.808, 90.

    CAS  Article  Google Scholar 

  11. 11.

    C. Xiang, M. Li, M. Zhi, A. Manivannan, and N. Wu (2012). J. Mater. Chem.22, 19161.

    CAS  Article  Google Scholar 

  12. 12.

    H. Xiao, W. Guo, B. Sun, M. Pei, and G. Zhou (2016). Electrochim. Acta190, 104.

    CAS  Article  Google Scholar 

  13. 13.

    V. Sharavath, S. Sarkar, and S. Ghosh (2018). J. Electroanal. Chem.829, 208.

    CAS  Article  Google Scholar 

  14. 14.

    Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie, and C. M. Chen (2019). J. Mater. Chem. A7, 16028.

    CAS  Article  Google Scholar 

  15. 15.

    C. F. Liu, Y. C. Liu, T. Y. Yi, and C. C. Hu (2019). Carbon145, 529.

    CAS  Article  Google Scholar 

  16. 16.

    S. Bashir, P. Hanumandla, H. Y. Huang, and J. L. Liu (2018). Nanostructured Mater. Next-Gen Energy Storage Convers. Fuel Cells4, 517.

    Google Scholar 

  17. 17.

    B. E. Conway, V. Birss, and J. Wojtowicz (1997). J. Power. Sources66, 1.

    CAS  Article  Google Scholar 

  18. 18.

    R. B. Rakhi, W. Chen, and H. N. Alshareef (2012). J. Mater. Chem.22, 5177.

    CAS  Article  Google Scholar 

  19. 19.

    Q. Yang, Z. Li, R. Zhang, L. Zhou, M. Shao, and M. Wei (2017). Nano. Energy.41, 408.

    CAS  Article  Google Scholar 

  20. 20.

    Y. Han and L. Dai (2019). Macromol. Chem. Phys.220, 1.

    Google Scholar 

  21. 21.

    G. A. Snook, P. Kao, and A. S. Best (2011). J. Power. Sources.196, 1.

    CAS  Article  Google Scholar 

  22. 22.

    A. Rudge, J. Davey, I. Raistrick, and S. Gottesfeld (1994). J. Power Sources47, 89.

    CAS  Article  Google Scholar 

  23. 23.

    X. Lang, A. Hirata, T. Fujita, and M. Chen (2011). Nat. Nanotechnol.6, 232.

    CAS  Article  Google Scholar 

  24. 24.

    S. N. Pusawale, P. R. Deshmukh, P. S. Jadhav, and C. D. Lokhande (2019). Mater. Renew. SustainEnergy8, 1.

    Article  Google Scholar 

  25. 25.

    S. Mothkuri, S. Chakrabarti, H. Gupta, B. Padya, T. N. Rao, and P. K. Jain (2019). Mater. Today. Proc.. https://doi.org/10.1016/j.matpr.2019.03.236.

    Article  Google Scholar 

  26. 26.

    S. Qiu, R. Li, Z. Huang, Z. Huang, C. P. Tsui, C. He, X. Han, and Y. Yang (2019). Compos. Part B Eng.161, 37.

    CAS  Article  Google Scholar 

  27. 27.

    N. Palaniyandy, F. P. Nkosi, K. Raju, and K. I. Ozoemena (2019). J. Electroanal. Chem.833, 79.

    CAS  Article  Google Scholar 

  28. 28.

    P. Wu, S. Dai, G. Chen, S. Zhao, Z. Xu, M. Fu, P. Chen, Q. Chen, X. Jin, Y. Qiu, S. Yang, and D. Ye (2020). Appl. Catal. B Environ.268, 118418.

    Article  Google Scholar 

  29. 29.

    X. Jiang, P. Gray, M. Patel, J. Zheng, and J. J. Yin (2020). J. Mater. Chem. B8, 1191.

    CAS  Article  Google Scholar 

  30. 30.

    F. W. Boyom-Tatchemo, F. Devred, G. Ndiffo-Yemeli, S. Laminsi, and E. M. Gaigneaux (2020). Appl. Catal. B Environ.260, 118159.

    CAS  Article  Google Scholar 

  31. 31.

    M. S. Osgouei, M. Khatamian, and H. Kakili (2020). Mater. Chem. Phys.239, 122108.

    CAS  Article  Google Scholar 

  32. 32.

    K. Byrappa and T. Adschiri (2007). Prog. Cryst. Growth Charact. Mater.53, 117.

    CAS  Article  Google Scholar 

  33. 33.

    Y. Zhao, M. Hao, Y. Wang, Y. Sha, and L. Su (2016). J. Solid. State. Electrochem.20, 81.

    CAS  Article  Google Scholar 

  34. 34.

    H. Liu, H. Zhang, H. Xu, T. Lou, Z. Sui, and Y. Zhang (2018). J. Electrochem. Soc.165, A97.

    CAS  Article  Google Scholar 

  35. 35.

    H. U. Shah, F. Wang, M. S. Javed, N. Shaheen, M. Saleem, and Y. Li (2018). Ceram. Int.44, 3580.

    Article  Google Scholar 

  36. 36.

    H. Ullah Shah, F. Wang, M. Sufyan Javed, N. Shaheen, S. Ali, M. Ashfaq Ahmad, and K. He (2018). Mater. Lett.210, 148.

    CAS  Article  Google Scholar 

  37. 37.

    J. Yao, S. Yao, F. Gao, L. Duan, M. Niu, and J. Liu (2018). J. Colloid. Interface. Sci.511, 434.

    CAS  Article  Google Scholar 

  38. 38.

    L. Wang, G. Duan, S. M. Chen, and X. Liu (2018). J. Alloys. Compd.752, 123.

    CAS  Article  Google Scholar 

  39. 39.

    Y. Xiao, Y. Cao, Y. Gong, A. Zhang, J. Zhao, S. Fang, D. Jia, and F. Li (2014). J. Power. Sources.246, 926.

    CAS  Article  Google Scholar 

  40. 40.

    A. K. Singh, D. Sarkar, G. G. Khan, and K. Mandal (2013). J. Mater. Chem. A.1, 12759.

    CAS  Article  Google Scholar 

  41. 41.

    L. Halder, A. Maitra, A. K. Das, R. Bera, S. K. Karan, S. Paria, A. Bera, S. K. Si, and B. B. Khatua (2019). ACS Appl. Electron. Mater.1, 189.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ramamanohar Reddy Nagireddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Godlaveeti, S.K., Jangiti, S., Somala, A.R. et al. Different Phase and Morphology Effect of Manganese Oxide on Electrochemical Performance for Supercapacitor Application. J Clust Sci (2020). https://doi.org/10.1007/s10876-020-01833-4

Download citation

Keywords

  • Hydrothermal method
  • MnO2 nanowires
  • Nickel foam
  • Supercapacitor