First Principles Study of Structure, Alloying and Electronic Properties of Mg-doped CuAg Nanoalloys

Abstract

Structure, alloying and electronic properties of Mg-doped Cu\(_n\)Ag\(_{13-n}\) nano-clusters have been studied for all compositions, using first principles density functional theory. Similar to the undoped CuAg clusters, the Mg-doped clusters also retain core-shell structural pattern. Interestingly, the Mg-doping has increased the alloying property by inducing enhanced charge transfer among the constituting Cu as well as Ag atoms and thereby hybridization of their valence orbitals. Furthermore, the Mg-doping in the CuAg nano-cluster alters the electronic structure of the host clusters by shifting the \(d-\)band center towards the Fermi level, which facilitates Ag oxidation process and accelerates the antibacterial property of the CuAg nano-alloys.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    J. S. Kim, E. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park and C. Y. Hwang (2007). Nanomedicine 3, 95.

    CAS  PubMed  Google Scholar 

  2. 2.

    S. Chernousova and M. Epple (2013). Angew. Chem. Int.52, 1636.

    CAS  Google Scholar 

  3. 3.

    G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero (2015). Molecules, 20, 8856

    CAS  Article  Google Scholar 

  4. 4.

    E. Cavaliere, C. S. De, G. Cesari, G. Landini, E. Riccobono, L. Pallecchi, G. M. Rossolini, L. Gavioli (2015). Nanomedicine 11, 1417

    CAS  PubMed  Google Scholar 

  5. 5.

    V. K. Sharma, R. A. Yngard, Y. Lin (2009). Adv. Colloid Interface Sci.145, 83

    CAS  PubMed  Google Scholar 

  6. 6.

    I. Sondi, B. Salopek-Sondi (2004). J. Colloid Interface Sci. 275, 177

    CAS  PubMed  Google Scholar 

  7. 7.

    M. K. Rai, S. D. Deshmukh, A. P. Ingle, A. K. Gade (2012). J. App. Microbiol. 112, 841

    CAS  PubMed  Google Scholar 

  8. 8.

    A. Roy, O. Butut, S. Some, A. K. Mandal and M. D. Yilmaz (2019). RSC Adv. 9, 2673

    CAS  Google Scholar 

  9. 9.

    J. Tian, K. K. Wong, C.-M. Ho, C.-N. Lok, W.-Y. Yu, C.-M. Che, J.-F. Chiu, P. K. H. Tam (2007). ChemMedChem2, 129

    CAS  PubMed  Google Scholar 

  10. 10.

    S. Kittler, C. Greulich, J. Diendorf, M. Koller, M. Epple (2010). Chem. Mater.22, 4548

    CAS  Google Scholar 

  11. 11.

    C. Rigo, L. Ferroni, I. Tocco, M. Roman, I. Munivrana, C. Gardin, W. Cairns, V. Vindigni, B. Azzena, C. C. Barbante, B. Zavan (2013). Int. J. Mol. Sci.14, 4817

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Y. Zhou, J. Yang, T. He, H. Shi, X. Cheng, Y. Lu (2013). Small 9, 3445.

    CAS  PubMed  Google Scholar 

  13. 13.

    K. S. Tan and K. Y. Cheong (2013). J. Nanopart. Res. 15, 1537.

    Google Scholar 

  14. 14.

    N. R. Kim, K. Shin, I. Jung, M. Shim and H. M. Lee (2014). J. Phys. Chem. C118, 26324.

    CAS  Google Scholar 

  15. 15.

    A. Perdikaki, A. Galeou, G. Pilatos, I. Karatasios, N. K. Kanellopoulos, A. Prombona, G. N. Karanikolos (2016). ACS Appl. Mater. Interfaces8, 27498.

    CAS  Google Scholar 

  16. 16.

    G. Benetti, E. Cavaliere, R. Brescia, S. Salassi, R. Ferrando, A. Vantomme, L. Pallecchi, S. Pollini, S. Boncompagni, B. Fortuni, M. J. Van Bael, F. Banfi and L. Gavioli (2019). Nanoscale11, 1626.

    CAS  PubMed  Google Scholar 

  17. 17.

    M. Peron, J. Torgersen and F. Berto (2017). Metals7, 252.

    Google Scholar 

  18. 18.

    P.-R. Cha, H.-S. Han, G.-F.Yang, Y.-C. Kim, K.-H. Hong, S.-C. Lee, J.-Y. Jung, J.-P. Ahn, Y.-Y. Kim, S.-Y. Cho, J. Y. Byun, K.-S. Lee, S.-J. Yang and H.-K. Seok (2013). Sci. Rep.3, 2367.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    M. Razavi, Y. Huang (2019) Biomater. Sci.7, 2241.

    CAS  PubMed  Google Scholar 

  20. 20.

    R. Janot, X. Darok, A. Rougter, L. Aymard, G. A. Nazri, J. M. Tarascon (2005) J. Alloys Compd.404-406, 293

    Google Scholar 

  21. 21.

    Y. Zhang, Y. Tsushio, H. Enoki, E. Akiba (2005) J. Alloys Compd.393, 185.

    CAS  Google Scholar 

  22. 22.

    D. Tie, F. Feyerabend, W.-D. Miller, R. Schade, K. Liefeith, K. U. Kainer and R. Willumeit (2013). Eur Cells Mater.25, 284.

    CAS  Google Scholar 

  23. 23.

    J. J. Reilly and R. H. Wiswall (1967). Inorg. Chem. 6, (12), 2220.

    CAS  Google Scholar 

  24. 24.

    A. Mohajeri (2018). J. Alloys Compd. 735, 1962.

    CAS  Google Scholar 

  25. 25.

    R. Ferrando, G. Rossi, A. C. Levi, Z. Kuntova, F. Nita, G. Barcaro, A. Fortunelli, A. Jelea, C. Mottet, J. Goniakowski (2009). J. Chem. Phys. 130, 174702.

    PubMed  Google Scholar 

  26. 26.

    J. Goniakowski, A. Jelea, C. Mottet, G. Barcaro, A. Fortunelli, Z. Kuntova, F. Nita, A. C. Levi, G. Rossi and R. Ferrando (2009). J. Chem. Phys. 130, 174703.

    PubMed  Google Scholar 

  27. 27.

    D. Bochicchio, R. Ferrando, E. Panizon and G. Rossi (2016). J. Phys. : Condens. Mater.28, 064005.

    PubMed  Google Scholar 

  28. 28.

    Vienna ab initio simulation package (VASP), Technische Universität Wien (1999)

  29. 29.

    G. Kresse, J. Hafner (1993). Phys. Rev. B47, 558.

    CAS  Google Scholar 

  30. 30.

    G. Kresse, J. Furthmuller (1996). Phys. Rev. B54, 11169.

    CAS  Google Scholar 

  31. 31.

    P. E. Blöchl (1994). Phys. Rev. B50, 17953.

    Article  Google Scholar 

  32. 32.

    G. Kresse and D. Joubert (1999). Phys. Rev. B59, 1758.

    CAS  Google Scholar 

  33. 33.

    J. P. Perdew, K. Burke and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    CAS  Google Scholar 

  34. 34.

    Isomers having the same number of atoms, composition and geometric structure, but differing in the arrangement of the two species of atoms, are called homotops; R. Ferrando, J. Jellinek and R. L. Johnston (2008). Chem. Rev. 108, 846.

  35. 35.

    S. Datta, A. K. Raychaudhuri and T. Saha-Dasgupta (2017). J. Chem. Phys. 146, 164301.

    PubMed  Google Scholar 

  36. 36.

    A. Tongo and I. Tanaka (2015). Scr. Mater. 108, 1.

    Google Scholar 

  37. 37.

    A. Varas, F. Aguilera-Granja, J. Rogan and M. Kiwi (2015). J. Magn. Magn. Mater. 394, 325.

    CAS  Google Scholar 

  38. 38.

    S. Datta (2019). AIP Adv. 9, 115316.

    Google Scholar 

  39. 39.

    S. Datta, M. Kabir, T. Saha-Dasgupta and A. Mookerjee (2009). Phys. Rev. B80, 085418.

    Google Scholar 

  40. 40.

    B. Predel, Numerical Data and Functional Relationships in Science and Technology ed. B. Predel, vol. 12A, Springer, Berlin, Heidelberg, 2006.

  41. 41.

    K. D. Malviya, C. Srivastava and K. Chattopadhyay (2015). RSC Adv. 5, 35541.

    CAS  Google Scholar 

  42. 42.

    M. Tchaplyguine, T. Andersson, C. Zhang and O. Bj Rneholm (2013). J. Chem. Phys.138, 104303.

    CAS  PubMed  Google Scholar 

  43. 43.

    K. D. Malviya and K. Chattopadhyay (2016) J. Phys. Chem. C120, 27699.

    CAS  Google Scholar 

  44. 44.

    F. Baletto, C. Mottet and R. Ferrando (2002). Phys. Rev. B66, 155420.

    Google Scholar 

  45. 45.

    M. Molayem, V. G. Grigoryan and M. Springborg (2011). J. Phys. Chem. C115, 22148.

    CAS  Google Scholar 

  46. 46.

    G. Barcaro, A. Fortunelli, G. Rossi, F. Nita and R. Ferrando (2006). J. Phys. Chem. B110, 23197.

    CAS  PubMed  Google Scholar 

  47. 47.

    S. Datta (2019). J. Nanopart. Res. 21, 110.

    Google Scholar 

  48. 48.

    A. Dutta, P. Mandal (2017). Comput. Theor. Chem. 1115, 284.

    CAS  Google Scholar 

  49. 49.

    M. K. Yadav, M. Ghosh, R. Biswas, A. K. Roychaudhuri, A. Mookerjee and S. Datta (2007). Phys. Rev. B 76, 195450.

    Google Scholar 

  50. 50.

    K. Koyasu, Y. Naono, M. Akutsu, M. Mitsui and A. Nakajima (2006). Chem. Phys. Lett. 422, 62.

    CAS  Google Scholar 

  51. 51.

    S. Datta, R. Banerjee and A. Mookerjee (2015). J. Chem. Phys. 142, 024309.

    PubMed  Google Scholar 

  52. 52.

    Y. Chang, Y. Cheng, Y. Feng, K. Li, H. Jian, H. Zhang and A. C. S. Appl (2019). Mater. Interfaces11, 12224.

    CAS  Google Scholar 

  53. 53.

    B. Hammer and J. K. Norskov (1995). Surf. Surf. Sci. 343, 211.

    CAS  Google Scholar 

  54. 54.

    I. Demiroglu, Z. Y. Li, L. Piccolo and R. L. Johnston (2016). Catal. Sci. Technol. 6, 6916.

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Department of Science and Technology, India for support through INSPIRE Faculty Fellowship, Grant No. IFA12-PH-27. The author also acknowledges exciting discussions with Prof. Tanusri Saha-Dasgupta.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soumendu Datta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Datta, S. First Principles Study of Structure, Alloying and Electronic Properties of Mg-doped CuAg Nanoalloys. J Clust Sci (2020). https://doi.org/10.1007/s10876-020-01830-7

Download citation

Keywords

  • Cu-Ag nanoalloys
  • Mg-doping
  • DFT
  • Enhanced alloying
  • Shifting of \(d-\)band center