Heterometallic One-Dimensional Tetranuclear Cu–Na Cluster-Based Polymers: Room Temperature Synthesis, Structures, and Properties


Two novel heterometallic one-dimensional tetranuclear Cu-Na cluster-based polymers Complexes, [Cu2Na2(L1)2(AcO)2(EtOH)2]n (1, H2L1 = 2-methoxy-6-[(1H-tetrazol-5-ylimino)-methyl]-phenol) and [Cu2Na2(L2)2(AcO)2(H2O)(CH3OH)2]n (2, H2L2 = 2-ethoxy-6-[(1H-tetrazol-5-ylimino)-methyl]-phenol) are central symmetry copper- sodium structures which were synthesized by reacting copper acetate monohydrate and sodium hydroxide with 2-hydroxy-benzaldehyde ramification Schiff base in a micro vial at room temperature. Both the polymer complexes were characterized by elemental analysis, infrared spectroscopy, and X-ray single-crystal diffraction analysis. Moreover, the luminescent properties of 1 and 2 were also studied, and intermolecular interaction was analysized using Hirshfeld surface analysis. The coordination mode of the bridged ligand L in 1 and 2 is μ5-L-κ7O1, O2:O2, N1, N2, N3, N4.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    C. M. Lieberman, A. Navulla, H. Zhang, A. S. Filatov, and E. V. Dikarev (2014). Inorg. Chem. 53, (9), 4733.

    CAS  PubMed  Google Scholar 

  2. 2.

    P. L. Feng, C. C. Beedle, W. Wernsdorfer, C. Koo, M. Nakano, S. Hill, and D. N. Hendrickson (2007). Inorg. Chem. 46, (20), 8126.

    CAS  PubMed  Google Scholar 

  3. 3.

    A. V. Niekerk, P. Chellan, and S. F. Mapolie (2019). Eur. J. Inorg. Chem. 2019, (30), 3432.

    Google Scholar 

  4. 4.

    Z.-G. Hu, R.-X. Zhao, S.-H. Zhang, and S.-L. Chen (2016). J. Clust. Sci. 27, (6), 1933.

    CAS  Google Scholar 

  5. 5.

    S.-H. Zhang, R.-X. Zhao, G. Li, H.-Y. Zhang, C.-L. Zhang, and G. Muller (2014). RSC Adv. 4, 54837.

    CAS  Google Scholar 

  6. 6.

    R.-X. Zhao, H. Hai, G. Li, H.-Y. Zhang, Q. P. Huang, S.-H. Zhang, and H.-P. Li (2014). J. Cluster Sci. 25, (6), 1541–1552.

    CAS  Google Scholar 

  7. 7.

    L. Huebner, A. Kornienko, T. J. Emge, and J. G. Brennan (2004). Inorg. Chem. 43, (18), 5659–5664.

    CAS  PubMed  Google Scholar 

  8. 8.

    Q. Yang and J. Tang (2019). Dalton Trans 48, 769–778.

    CAS  PubMed  Google Scholar 

  9. 9.

    A. Beheshti, W. Clegg, V. Nobakht, and R. W. Harrington (2013). Cryst. Growth Des 13, 1023.

    CAS  Google Scholar 

  10. 10.

    S. H. Zhang, N. Li, C. M. Ge, C. Feng, and L. F. Ma (2011). Dalton Trans. 40, 3000.

    CAS  PubMed  Google Scholar 

  11. 11.

    L. Yang, S. H. Zhang, W. Wang, J. J. Guo, Q. P. Huang, R. X. Zhao, C. L. Zhang, and G. Muller (2014). Polyhedron 74, 49.

    CAS  Google Scholar 

  12. 12.

    L. Y. Xin, G. Z. Liu, X. L. Li, and L. Y. Wang (2012). Cryst. Growth Des. 12, 147.

    CAS  Google Scholar 

  13. 13.

    L. F. Ma, X. Q. Li, L. Y. Wang, and H. W. Hou (2011). CrystEngComm 13, 4625.

    CAS  Google Scholar 

  14. 14.

    S. Toki, J. Che, L. Rong, B. S. Hsiao, S. Amnuaypornsri, A. Nimpaiboon, and J. Sakdapipanich (2013). Macromolecules 46, 5238.

    CAS  Google Scholar 

  15. 15.

    X. G. Yang, Z. M. Zhai, X. M. Lu, Y. Zhao, X. H. Chang, and L. F. Ma (2019). Dalton Trans. 48, 10785.

    CAS  PubMed  Google Scholar 

  16. 16.

    L. S. Long (2010). CrystEngComm 12, 1354.

    CAS  Google Scholar 

  17. 17.

    J. W. Cheng, S. T. Zheng, and G. Y. Yang (2007). Dalton Trans. 36, 4059.

    Google Scholar 

  18. 18.

    S. H. Zhang, L. F. Ma, H. H. Zou, Y. G. Wang, H. Liang, and M. H. Zeng (2011). Dalton Trans. 40, 11402.

    CAS  PubMed  Google Scholar 

  19. 19.

    Y. Zhao, L. L. Zhai, J. Fan, K. Chen, and W. Y. Sun (2012). Polyhedron 46, 16.

    CAS  Google Scholar 

  20. 20.

    Z. Chen, Y. Fan, J. Wang, L. Yang, and S. Zhang (2018). ChemistrySelect 3, 9841.

    CAS  Google Scholar 

  21. 21.

    G. M. Sheldrick (2015). Acta. Crystallogr. C. Struct. Chem. 71, 3.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Cryst. 42, 339.

    CAS  Google Scholar 

  23. 23.

    J. J. McKinnon, M. A. Spackman, and A. S. Mitchell (2004). Acta Cryst. B60, 627.

    CAS  Google Scholar 

  24. 24.

    F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor (1987). J. Chem. Soc. Perkin Trans. 2, S1.

    Google Scholar 

  25. 25.

    W. W. Sun, X. B. Qian, C. Y. Tian, and E. Q. Gao (2009). Inorg. Chim. Acta 362, 2744.

    CAS  Google Scholar 

  26. 26.

    H. Y. Zhang, W. Wang, H. Chen, S. H. Zhang, and Y. Li (2016). Inorg. Chim. Acta 453, 507.

    CAS  Google Scholar 

  27. 27.

    A. W. Addison, T. N. Rao, J. Reedijk, J. VanRijn, and G. C. Verschoor (1984). J. Chem. Soc. Dalton Trans. 1984, 1349.

    Google Scholar 

  28. 28.

    L. Yang, D. R. Powell, and R. P. Houser (2007). Dalton Trans. 2007, 955.

    Google Scholar 

  29. 29.

    S. H. Zhang, R. X. Zhao, G. Li, H.-Y. Zhang, Q.-P. Huang, and F.-P. Liang (2014). J. Solid State Chem. 220, 206.

    CAS  Google Scholar 

  30. 30.

    A. Wang (2012). Acta Cryst. E68, m43.

    Google Scholar 

  31. 31.

    C. Tolia, A. N. Papadopoulos, C. P. Raptopoulou, V. Psycharis, C. Garino, L. Salassa, and G. Psomas (2013). J. Inorg. Biochem. 123, 53.

    CAS  PubMed  Google Scholar 

  32. 32.

    L. Heinke, M. Tu, S. Wannapaiboon, R. A. Fischer, and C. Woell (2015). Micropor. Mesopor. Mater. 216, 200.

    CAS  Google Scholar 

  33. 33.

    W. Liu and X.-B. Yin (2016). Trends Analyt. Chem. 75, 86–96.

    CAS  Google Scholar 

  34. 34.

    P. Ling, J. Lei, L. Jia, and H. Ju (2016). Chem. Commun. 52, 1226.

    CAS  Google Scholar 

  35. 35.

    W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, and S. K. Ghosh (2017). Chem. Soc. Rev. 46, 3242.

    CAS  PubMed  Google Scholar 

  36. 36.

    X.-X. Wu, H.-R. Fu, M. L. Han, Z. Zhou, and L. F. Ma (2017). Cryst. Growth Des. 17, 6041.

    CAS  Google Scholar 

  37. 37.

    G.-X. Wen, M.-L. Han, X.-Q. Wu, Y.-P. Wu, W.-W. Dong, J. Zhao, D.-S. Li, and L.-F. Ma (2016). Dalton Trans. 45, 15492.

    CAS  PubMed  Google Scholar 

  38. 38.

    W.-Q. Kan, B. Liu, J. Yang, Y.-Y. Liu, and J.-F. Ma (2012). Cryst. Growth Des. 12, 2288.

    CAS  Google Scholar 

  39. 39.

    Y.-J. Cheng, R. Wang, S. Wang, X.-J. Xi, L.-F. Ma, and S.-Q. Zang (2018). Chem. Commun. 54, 13563.

    CAS  Google Scholar 

  40. 40.

    H. Johanna and M. B. Klaus (2013). Chem. Soc. Rev. 42, 9232.

    Google Scholar 

  41. 41.

    C. Javier and R. D. Antonio (2016). CrystEngComm. 18, 8556.

    Google Scholar 

  42. 42.

    I. E. Mikhailov, N. I. Vikrishchuk, L. D. Popov, G. A. Dushenko, A. D. Beldovskaya, Yu V Revinskii, and V. I. Minkin (2016). Russ. J. Gen. Chem. 86, (5), 1054.

    CAS  Google Scholar 

  43. 43.

    M. Shebl (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 117, 127.

    CAS  PubMed  Google Scholar 

  44. 44.

    G. Li, W. Wang, S. H. Zhang, H. Y. Zhang, and F. Y. Chen (2014). J. Clust. Sci. 25, 1589.

    CAS  Google Scholar 

  45. 45.

    S. H. Zhang, G. Li, H. Y. Zhang, and H. P. Li (2015). Z Krist.-Cryst. Mater. 230, 479.

    CAS  Google Scholar 

Download references


This work was supported by the National Nature Science Foundation of China (No. 21861014), and Program of the Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi (No. GXYSXTZX2017-II-3).

Author information



Corresponding authors

Correspondence to Yu Xiao or Shuhua Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.


Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 1959297, 1959298 for and 2. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: 44 1223 336033, e-mail: deposit@ccdc.cam.ac.uk). Electronic supplementary information (ESI) available: Selected bond lengths and angles, FTIR curves, 2D network of 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, Q., Zeng, Y., Wang, J. et al. Heterometallic One-Dimensional Tetranuclear Cu–Na Cluster-Based Polymers: Room Temperature Synthesis, Structures, and Properties. J Clust Sci 32, 499–505 (2021). https://doi.org/10.1007/s10876-020-01809-4

Download citation


  • Heterotetranuclear polymer
  • Crystal structure
  • Hirshfeld surface analysis
  • Luminescence