Eco-friendly Microwave Synthesis of Gold Nanoparticles for Attenuation of Brain Dysfunction in Diabetic Rats

Abstract

In this current work, gold nanoparticles (AuNPs) were used to attenuate the brain dysfunction in experimental model of diabetes. Microwave radiation technique was utilized in the production of AuNPs. Afterward, 40 male albino rats were consumed in this study and divided into five groups: control, diabetic, diabetic administered only dextran, diabetic administered AuNPs in a dose of 1 mg/kg body weight in aqueous solution/day, and diabetic administered AuNPs in a dose of 2 mg/kg body weight in aqueous solution/day. In addition, brain neurotransmitters and cholinesterase activity were also evaluated. Results: In diabetic group, diabetes complications were appeared in elevation of oxidative stress parameters and pro inflammatory markers, in addition to disturbances of neurotransmitters as well as cholinesterase activity, however in treated groups, AuNPs significantly controlled all these hazardous induced by induction of diabetes. In conclusion, AuNPs appeared as a promising agent, that has the ability to augment neuronal damage and brain dysfunction appeared during diabetes mellitus. Additionally, the high dose (2 mg/kg body weight) appeared more potent than the lower dose (1 mg/kg body weight) in attenuating diabetic complications during experimental diabetes.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. T. Rahimi, E. Ahmadpour, B. R. Esboei, A. Spotin, M. H. K. Koshki, A. Alizadeh, S. Honary, H. Barabadi, and M. A. Mohammadi (2015). Int. J. Surg. 19, 128.

    PubMed  Google Scholar 

  2. 2.

    H. Barabadi, B. Tajani, M. Moradi, K. D. Kamali, R. Meena, S. Honary, M. A. Mahjoub, and M. Saravanan (2019). J. Clust. Sci. 1.

  3. 3.

    T. Sugiura, Y. Ariyoshi, S. Negoro, S. Nakamura, H. Ikegami, M. Takada, T. Yana, and M. Fukuoka (2005). Investig. New Drugs. 23, 331.

    CAS  Google Scholar 

  4. 4.

    V. Varadharaj, A. Ramaswamy, R. Sakthivel, R. Subbaiya, H. Barabadi, M. Chandrasekaran, and M. Saravanan (2019). J. Clust. Sci. 1.

  5. 5.

    H. Barabadi, M. Ovais, Z. K. Shinwari, and M. Saravanan (2017). Green Chem. Lett. Rev. 10, 285.

    CAS  Google Scholar 

  6. 6.

    R. Subbaiya, M. Saravanan, A. R. Priya, K. R. Shankar, M. Selvam, M. Ovais, R. Balajee, and H. Barabadi (2017). IET Nanobiotechnol. 11, 965.

    PubMed  Google Scholar 

  7. 7.

    P. Boomi, G. P. Poorani, S. Palanisamy, S. Selvam, G. Ramanathan, S. Ravikumar, H. Barabadi, H. G. Prabu, J. Jeyakanthan, and M. Saravanan (2019). J. Clust. Sci. 30, 715.

    CAS  Google Scholar 

  8. 8.

    H. Barabadi, Z. Alizadeh, M. T. Rahimi, A. Barac, A. E. Maraolo, L. J. Robertson, A. Masjedi, F. Shahrivar, and E. Ahmadpour (2019). Nanomed. Nanotechnol. Biol. Med. 18, 221.

    CAS  Google Scholar 

  9. 9.

    H. Barabadi, M. Najafi, H. Samadian, A. Azarnezhad, H. Vahidi, M. A. Mahjoub, M. Koohiyan, and A. Ahmadi (2019). Medicina. 55, 439.

    PubMed Central  Google Scholar 

  10. 10.

    M. Kasithevar, M. Saravanan, P. Prakash, H. Kumar, M. Ovais, H. Barabadi, and Z. K. Shinwari (2017). J. Interdiscip. Nanomedicine. 2, 131.

    CAS  Google Scholar 

  11. 11.

    A. Khatua, E. Priyadarshini, P. Rajamani, A. Patel, J. Kumar, A. Naik, M. Saravanan, H. Barabadi, A. Prasad, and B. Paul (2020). J. Clust. Sci. 31, 125.

    CAS  Google Scholar 

  12. 12.

    M. Ponnanikajamideen, S. Rajeshkumar, M. Vanaja, and G. Annadurai (2019). Can. J. Diabetes. 43, 82.

    PubMed  Google Scholar 

  13. 13.

    T. I. Shaheen, M. E. El-Naggar, J. S. Hussein, M. El-Bana, E. Emara, Z. El-Khayat, M. M. Fouda, H. Ebaid, and A. Hebeish (2016). Biomed. Pharmacother. 83, 865.

    CAS  PubMed  Google Scholar 

  14. 14.

    J. K. Patra, G. Das, L. F. Fraceto, E. V. R. Campos, M. del Pilar Rodriguez-Torres, L. S. Acosta-Torres, L. A. Diaz-Torres, R. Grillo, M. K. Swamy, and S. Sharma (2018). J. Nanobiotechnol. 16, 71.

    Google Scholar 

  15. 15.

    P. Khandel, R. K. Yadaw, D. K. Soni, L. Kanwar, and S. K. Shahi (2018). J. Nanostruct. Chem. 8, 217.

    CAS  Google Scholar 

  16. 16.

    H. E. Emam, N. S. El-Hawary, and H. B. Ahmed (2017). Int. J. Biol. Macromol. 96, 697.

    CAS  PubMed  Google Scholar 

  17. 17.

    R. M. Ganesan, and H. G. Prabu (2015). Arab. J. Chem.

  18. 18.

    B. Tang, L. Sun, J. Kaur, Y. Yu, and X. Wang (2014). Dye. Pigment. 103, 183.

    CAS  Google Scholar 

  19. 19.

    K. Shoueir, S. Kandil, H. El-hosainy, and M. El-Kemary (2019). J. Clean. Prod. 230, 383.

    CAS  Google Scholar 

  20. 20.

    A. García, L. Delgado, J. A. Torà, E. Casals, E. González, V. Puntes, X. Font, J. Carrera, and A. Sánchez (2012). J. Hazard. Mater. 199, 64.

    PubMed  Google Scholar 

  21. 21.

    A. K. Khan, R. Rashid, G. Murtaza, and A. Zahra (2014). Trop. J. Pharm. Res. 13, 1169.

    CAS  Google Scholar 

  22. 22.

    M. Ganeshkumar, M. Sathishkumar, T. Ponrasu, M. G. Dinesh, and L. Suguna (2013). Colloids Surf. B Biointerfaces. 106, 208.

    CAS  PubMed  Google Scholar 

  23. 23.

    H. Barabadi, O. Hosseini, K.D. Kamali, F.J. Shoushtari, M. Rashedi, H. Haghi-Aminjan, and M. Saravanan. J. Clust. Sci. 1.

  24. 24.

    H. Barabadi, H. Vahidi, K.D. Kamali, M. Rashedi, O. Hosseini, A.R.G. Ghomi, and M. Saravanan (2019). J. Clust. Sci. 1.

  25. 25.

    H. Barabadi, H. Vahidi, M. A. Mahjoub, Z. Kosar, K. D. Kamali, K. Ponmurugan, O. Hosseini, M. Rashedi, and M. Saravanan (2019). J. Clust. Sci. 1.

  26. 26.

    A. Khatua, A. Prasad, E. Priyadarshini, A.K. Patel, A. Naik, M. Saravanan, H. Barabadi, B. Paul, R. Paulraj, and R. Meena (2019). J. Clust. Sci. 1.

  27. 27.

    C. Malarkodi, S. Rajeshkumar, and G. Annadurai (2017). Food Control. 80, 11.

    CAS  Google Scholar 

  28. 28.

    V. Karthick, V. G. Kumar, T. S. Dhas, G. Singaravelu, A. M. Sadiq, and K. Govindaraju (2014). Colloids Surf. B Biointerfaces. 122, 505.

    CAS  PubMed  Google Scholar 

  29. 29.

    M. Vairavel, E. Devaraj, and R. Shanmugam (2020). Environ. Sci. Pollut. Res. 1.

  30. 30.

    S. Rajeshkumar (2016). J. Genet. Eng. Biotechnol. 14, 195.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    A. Sazgarnia, A. R. Taheri, S. Soudmand, A. J. Parizi, O. Rajabi, and M. S. Darbandi (2013). Int. J. Hyperth. 29, 79.

    CAS  Google Scholar 

  32. 32.

    R. K. Das, P. J. Babu, N. Gogoi, P. Sharma, and U. Bora (2012). ISRN Nanomater. 2012.

  33. 33.

    N. V. K. Thanh, N. D. Giang, L. Q. Vinh, and H. T. Dat (2014). Commun. Phys. 24, 146.

    Google Scholar 

  34. 34.

    D. Hebbalalu, J. Lalley, M. N. Nadagouda, and R. S. Varma (2013). ACS Sustain. Chem. Eng. 1, 703.

    CAS  Google Scholar 

  35. 35.

    H. Peng, A. Yang, and J. Xiong (2013). Carbohydr. Polym. 91, 348.

    CAS  PubMed  Google Scholar 

  36. 36.

    R. Singh and J. W. Lillard Jr. (2009). Exp. Mol. Pathol. 86, 215.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    A. B. Seabra and N. Durán (2015). Metals 5, 934.

    Google Scholar 

  38. 38.

    J. Hussein, M. El-Bana, E. Refaat, and M.E. El-Naggar (2017). J. Funct. Foods. 37.

  39. 39.

    S. Pugazhenthi, L. Qin, and P. H. Reddy (2017). Biochim. Biophys. Acta Mol. Basis Dis. 1863, 1037.

    CAS  PubMed  Google Scholar 

  40. 40.

    S. E. Arnold, Z. Arvanitakis, S. L. Macauley-Rambach, A. M. Koenig, H.-Y. Wang, R. S. Ahima, S. Craft, S. Gandy, C. Buettner, and L. E. Stoeckel (2018). Nat. Rev. Neurol. 14, 168.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    J. Sripetchwandee, N. Chattipakorn, and S. C. Chattipakorn (2018). Front. Endocrinol. 9, 496.

    Google Scholar 

  42. 42.

    D. A. Di Butterfield, F. Domenico, and E. Barone (2014). Biochim. Biophys. Acta Mol. Basis Dis. 1842, 1693.

    CAS  Google Scholar 

  43. 43.

    H. G. Hegazy, E. H. A. Ali, and A. H. M. Elgoly (2015). Cytokine. 71, 173.

    CAS  PubMed  Google Scholar 

  44. 44.

    S. Uchiyama and M. Yamaguchi (2003). Int. J. Mol. Med. 12, 949.

    CAS  PubMed  Google Scholar 

  45. 45.

    J. Hussein, E. Refaat, S. Morsy, D. Medhat, and F. Oraby (2013). J. Appl. Pharm. Sci. 3, 124.

    Google Scholar 

  46. 46.

    D. Medhat, H. A. El-mezayen, M. E. El-Naggar, A. R. Farrag, M. E. Abdelgawad, J. Hussein, and M. H. Kamal (2019). Mol. Biol. Rep. 1.

  47. 47.

    P. Trinder (1969). Ann. Clin. Biochem. 6, 24.

    CAS  Google Scholar 

  48. 48.

    S. A. Berson and R. S. Yalow (1961). Am. J. Med. 31, 874.

    CAS  PubMed  Google Scholar 

  49. 49.

    G. L. Ellman, K. D. Courtney, V. Andres Jr., and R. M. Featherstone (1961). Biochem. Pharmacol. 7, 88.

    CAS  PubMed  Google Scholar 

  50. 50.

    M. Nishikimi, N. A. Rao, and K. Yagi (1972). Biochem. Biophys. Res. Commun. 46, 849.

    CAS  PubMed  Google Scholar 

  51. 51.

    E. Beutler, O. Duron, and B. M. Kelly (1963). J. Lab. Clin. Med. 61, 882.

    CAS  PubMed  Google Scholar 

  52. 52.

    L. Ferreira, E. Teixeira-de-Lemos, F. Pinto, B. Parada, C. Mega, H. Vala, R. Pinto, P. Garrido, J. Sereno, and R. Fernandes (2010). Mediators Inflamm. 2010.

  53. 53.

    S. Vallejo, E. Palacios, T. Romacho, L. Villalobos, C. Peiró, and C. F. Sánchez-Ferrer (2014). Cardiovasc. Diabetol. 13, 158.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    A. El-Hussein, M. Harith, and H. Abrahamse (2012). Int. J. Photoenergy. 2012.

  55. 55.

    M. E. El-Naggar, T. I. Shaheen, M. M. G. Fouda, and A. A. Hebeish (2016) Carbohydr. Polym. 136.

  56. 56.

    X. Ke, S. Sarina, J. Zhao, X. Zhang, J. Chang, and H. Zhu (2012). Chem. Commun. 48, 3509.

    CAS  Google Scholar 

  57. 57.

    S. Ganguly, P. Das, M. Bose, T. K. Das, S. Mondal, A. K. Das, and N. C. Das (2017). Ultrason. Sonochem. 39, 577.

    CAS  PubMed  Google Scholar 

  58. 58.

    J. J. M. Hoozemans, J. M. Van Rozemuller, E. S. Haastert, R. Veerhuis, and P. Eikelenboom (2008). Curr. Pharm. Des. 14, 1419.

    CAS  PubMed  Google Scholar 

  59. 59.

    J. S. Hussein, W. Rasheed, T. Ramzy, M. Nabeeh, M. Harvy, S. El-Toukhy, O. Ali, J. Raafat, and M. El-Naggar (2019). Hum. Exp. Toxicol. 38, 962.

    CAS  PubMed  Google Scholar 

  60. 60.

    J. Wang, Y. Chen, W. Zhang, G. Zheng, S. Meng, H. Che, T. Ke, J. Yang, J. Chen, and W. Luo (2013). Int. J. Biol. Sci. 9, 509.

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    M. E. El-Naggar, F. Al-Joufi, M. Anwar, M. F. Attia, and M. A. El-Bana (2019). Colloids Surf. B Biointerfaces. 177, 389.

    CAS  PubMed  Google Scholar 

  62. 62.

    T. Vlahogianni, M. Dassenakis, M. J. Scoullos, and A. Valavanidis (2007). Mar. Pollut. Bull. 54, 1361.

    CAS  PubMed  Google Scholar 

  63. 63.

    S. Samarghandian, T. Farkhondeh, F. Samini, and A. Borji (2016). Biochem. Res. Int. 2016.

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mehrez E. El-Naggar or Moustafa M. G. Fouda.

Ethics declarations

Conflict of Interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hussein, J., El-Naggar, M.E., Fouda, M.M.G. et al. Eco-friendly Microwave Synthesis of Gold Nanoparticles for Attenuation of Brain Dysfunction in Diabetic Rats. J Clust Sci 32, 423–435 (2021). https://doi.org/10.1007/s10876-020-01801-y

Download citation

Keywords

  • Gold nanoparticles
  • Neurotransmitters, HPLC
  • Dextran
  • Cholinesterase