Enhanced Electrocatalytic Performance of Pt Nanoparticles Incorporated CeO2 Nanorods on Polyaniline-Chitosan Support for Methanol Electrooxidation (Experimental and Statistical Analysis)


Here, CeO2 nanorods (CeO2NRs) were successfully synthesized and characterized. Pt nanoparticles were synthesized in the presence of CeO2NRs and the matrix of polyaniline (PA) and chitosan (CH) as support to prepare the novel Pt-CeO2NRs/PA-CH nanocomposite. The electrocatalytic performance of Pt-CeO2NRs/PA-CH was investigated for methanol oxidation (MO) through chronoamperometry, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Durability of the prepared catalyst was also evaluated. The effects of several factors such as temperature, methanol concentration and scan rate were also studied for MO experimentally and statistically. Pt-CeO2NRs/PA-CH had enhanced electrocatalytic activity, compared to Pt/PA-CH, revealing that it would be a promising catalyst for MO in fuel cells. The variations of anodic peak potential and current density of MO with three main factors (temperature, concentration and scan rate), their binary and triple interactions were investigated statistically. The results showed that both anodic peak potential and current density can be significantly affected by main factors and their interactions at 0.05 level of probability. Meanwhile, the proposed statistical models can accurately estimate the variation of peak potential and current density with studied factors. The results showed that increase in temperature and scan rate leads to the enhancement of both responses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    M. S. Ekrami-Kakhki, Z. Yavari, J. Saffari, and S. Abbasi (2016). J. Nanostruct. 6, 221.

    CAS  Google Scholar 

  2. 2.

    M. S. Khalifeh-Soltani, E. Shams, and E. Sharifi (2020). Int. J. Hydrog. Energy 45, 849.

    CAS  Google Scholar 

  3. 3.

    S. Yang, C. Hu, D. Liu, T. Zhang, T. Guo, and F. Liao (2014). J. Clust. Sci. 25, 337.

    CAS  Google Scholar 

  4. 4.

    M. Ghanbari, G. H. Rounaghi, N. Ashraf, M. Paydar, I. Razavipanah, and M. Karimi-Nazarabad (2017). J. Clust. Sci. 28, 2133.

    CAS  Google Scholar 

  5. 5.

    P. Kumar, K. Dutta, S. Das, and P. P. Kundu (2014). Int. J. Energy Res. 38, 1367.

    CAS  Google Scholar 

  6. 6.

    M. Elrouby, H. M. A. El-Lateef, and M. Sadek (2019). Int. J. Hydrog. Energy 44, 13820.

    CAS  Google Scholar 

  7. 7.

    J. Lai, R. Luque, and G. Xu (2015). Chem. Cat. Chem. 7, 3206.

    CAS  Google Scholar 

  8. 8.

    J. N. Tiwari, R. N. Tiwari, G. Singh, and K. S. Kim (2013). Nano Energy 2, 553.

    CAS  Google Scholar 

  9. 9.

    X. Zhang, B. Zhang, X. D. Li, L. X. Ma, and J. W. Zhang (2015). Int. J. Hydrog. Energy 40, 14416.

    CAS  Google Scholar 

  10. 10.

    E. Lee, S. Kim, J. Jang, H. Park, M. A. Matin, Y. Kim, and Y. Kwon (2015). J. Power Sources 294, 75.

    CAS  Google Scholar 

  11. 11.

    M. G. Hosseini, M. Abdolmaleki, and Esfahlan V. Daneshvari (2017). J. Porous Mater. 24, 305.

    CAS  Google Scholar 

  12. 12.

    S. J. Zaidi, M. Bello, A. Al-Ahmed, A. B. Yousaf, and M. Imran (2017). J. Electroanal. Chem. 794, 86.

    CAS  Google Scholar 

  13. 13.

    A. Naeimi, M. Honarmand, and A. Sedri (2019). Ultrason. Sonochem. 50, 331.

    CAS  PubMed  Google Scholar 

  14. 14.

    M. S. Ekrami-Kakhki, A. Naeimi, and F. Donyagard (2019). Int. J. Hydrog. Energy 44, 1671.

    CAS  Google Scholar 

  15. 15.

    Y. Li, C. Liu, Y. Liu, B. Feng, L. Li, H. Pan, W. Kellogg, D. Higgins, and G. Wu (2015). J. Power Sources 286, 354.

    CAS  Google Scholar 

  16. 16.

    C. C. Ting, C. H. Chao, C. Y. Tsai, I. K. Cheng, and F. M. Pan (2017). Appl. Surf. Sci. 416, 365.

    CAS  Google Scholar 

  17. 17.

    H. Yuan, D. Guo, X. Qiu, W. Zhu, and L. Chen (2009). J. Power Sources 188, 8.

    CAS  Google Scholar 

  18. 18.

    M. Noroozifar, M. Khorasani-Motlagh, M. S. Ekrami-Kakhki, and R. Khaleghian-Moghadam (2014). J. Power Sources 248, 130.

    CAS  Google Scholar 

  19. 19.

    V. Bambagioni, C. Bianchini, A. Marchionni, J. Filippi, F. Vizza, J. Teddy, P. Serp, and M. Zhiani (2009). J. Power Sources 190, 241.

    CAS  Google Scholar 

  20. 20.

    M. S. Ekrami-Kakhki, N. Farzaneh, and E. Fathi (2017). Int. J. Hydrog. Energy 42, 21131.

    CAS  Google Scholar 

  21. 21.

    W. Zhao, X. Zhou, J. Chen, and X. Lu (2013). J. Clust. Sci. 24, 739.

    CAS  Google Scholar 

  22. 22.

    T. Radhakrishnan and N. Sandhyarani (2017). Int. J. Hydrog. Energy 42, 7014.

    CAS  Google Scholar 

  23. 23.

    W. Q. Zhou, Y. K. Du, F. F. Ren, C. Y. Wang, J. K. Xu, and P. Yang (2010). Int. J. Hydrog. Energy 35, 3270.

    CAS  Google Scholar 

  24. 24.

    I. Carrillo, T. J. Leo, O. Santiago, F. Acción, E. Moreno-Gordaliza, and M. A. Raso (2018). Int. J. Hydrog. Energy 43, 16913.

    CAS  Google Scholar 

  25. 25.

    B. Wu, W. Zhao, L. Hou, T. Zhang, and C. Yang (2017). J. Clust. Sci. 28, 1295.

    CAS  Google Scholar 

  26. 26.

    D. Profeti and P. Olivi (2004). Electrochim. Acta 49, 4979.

    CAS  Google Scholar 

  27. 27.

    M. Zhiani, B. Rezaei, and J. Jalili (2010). Int. J. Hydrog. Energy 35, 9298.

    CAS  Google Scholar 

  28. 28.

    R. Yan, B. Jin, D. Li, J. Zheng, Y. Li, and C. Qian (2018). Synth. Met. 235, 110.

    CAS  Google Scholar 

  29. 29.

    S. Mondal and S. Malik (2016). J. Power Sources 328, 271.

    CAS  Google Scholar 

  30. 30.

    Q. Zhang, J. N. Lv, X. Y. Hu, Y. L. He, H. F. Yang, D. S. Kong, and Y. Y. Feng (2018). Int. J. Hydrog. Energy 43, 5603.

    CAS  Google Scholar 

  31. 31.

    P. O. Osifo and A. Masala (2010). J. Power Sources 195, 4915.

    CAS  Google Scholar 

  32. 32.

    L. Yin, Y. Wang, G. Pang, Y. Koltypin, and A. Gedanken (2002). J. Colloid Interface Sci. 246, 78.

    CAS  PubMed  Google Scholar 

  33. 33.

    C. C. Kung, P. Y. Lin, Y. Xue, R. Akolkar, L. Dai, X. Yu, and C. C. Liu (2014). J. Power Sources 256, 329.

    CAS  Google Scholar 

  34. 34.

    J. Q. Dong and Q. Shen (2012). J. Appl. Polym. Sci. 126, E10.

    CAS  Google Scholar 

  35. 35.

    Z. J. Gu, J. T. Wang, L. L. Li, L. F. Chen, and Q. Shen (2014). Mater. Lett. 117, 66.

    CAS  Google Scholar 

  36. 36.

    Z. J. Gu, J. R. Ye, W. Song, and Q. Shen (2014). Mater. Lett. 121, 12.

    CAS  Google Scholar 

  37. 37.

    H. Aydin, B. Gündüz, and C. Aydin (2019). Synth. Methods 252, 1.

    CAS  Google Scholar 

  38. 38.

    C. Aydin, H. Aydin, M. Taskin, and F. Yakuphanoglu (2019). J. Nanosci. Nanotechnol. 19, 2547.

    CAS  PubMed  Google Scholar 

  39. 39.

    C. Aydın (2018). Ceram. Int. 44, 17473.

    Google Scholar 

  40. 40.

    K. Saravanakumar, M. M. Ramjan, P. Suresh, and V. Muthuraj (2016). J. Alloys Compd. 664, 149.

    CAS  Google Scholar 

  41. 41.

    H. Miao, G. F. Huang, J. H. Liu, B. X. Zhou, A. Pan, W. Q. Huang, and G. F. Huang (2016). Appl. Surf. Sci. 370, 427.

    CAS  Google Scholar 

  42. 42.

    M. Li, H. Zheng, G. Han, Y. Xiao, and Y. Li (2017). Catal. Commun. 92, 95.

    CAS  Google Scholar 

  43. 43.

    D. V. Dao, G. Adilbish, T. D. Le, T. T. D. Nguyen, I. H. Lee, and Y. T. Yu (2019). J. Catal. 377, 589.

    CAS  Google Scholar 

  44. 44.

    M. F. R. Hanifah, J. Jaafar, M. H. D. Othman, A. F. Ismail, M. A. Rahman, N. Yusof, F. Aziz, and N. A. A. Rahman (2019). J. Alloys Compd. 793, 232.

    CAS  Google Scholar 

  45. 45.

    A. Nouralishahi, A. A. Khodadadi, A. M. Rashidi, and Y. Mortazavi (2013). J. Colloid Interface Sci. 393, 291.

    CAS  PubMed  Google Scholar 

  46. 46.

    Y. Wang, E. R. Fachini, G. Cruz, Y. M. Zhu, Y. Ishikawa, J. A. Colucci, and C. R. Cabrera (2001). J. Electrochem. Soc. 148, 222.

    Google Scholar 

  47. 47.

    K. Kakaei, A. Rahimi, S. Husseindoost, M. Hamidi, H. Javan, and A. Balavandi (2016). Int. J. Hydrog. Energy 41, 3861.

    CAS  Google Scholar 

  48. 48.

    M. S. Ekrami-Kakhki, N. Farzaneh, S. Abbasi, and B. Makiabadi (2017). J. Mater. Sci. Mater. Electron. 28, 12373.

    CAS  Google Scholar 

  49. 49.

    F. Su, C. K. Poh, Z. Tian, G. Xu, G. Koh, Z. Wang, Z. Liu, and J. Lin (2010). Energy Fuels 24, 3727.

    CAS  Google Scholar 

  50. 50.

    Y. Chang, G. Han, M. Li, and F. Gao (2011). Carbon 49, 5158.

    CAS  Google Scholar 

  51. 51.

    H. Huang, Z. He, X. Lin, W. Ruan, Y. Liu, and Z. Yang (2015). Appl. Catal. Gen. 490, 65.

    CAS  Google Scholar 

  52. 52.

    Q. Zhang, F. Yue, L. Xu, C. Yao, R. D. Priestley, and S. Hou (2019). Appl. Catal. B-Environ. 257, 117886.

    CAS  Google Scholar 

  53. 53.

    A. Shafaei Douk, H. Saravani, and M. Noroozifar (2018). Int. J. Hydrog. Energy 43, 7946.

    CAS  Google Scholar 

  54. 54.

    H. Wang, Y. Xue, B. Zhu, J. Yang, L. Wang, X. Tan, Z. Wang, and Y. Chu (2017). Int. J. Hydrog. Energy 42, 20549.

    CAS  Google Scholar 

  55. 55.

    G. Feng, Z. Pan, Y. Xu, H. Chen, G. Xia, Y. Zhang, S. Shi, and X. Deng (2018). Int. J. Hydrog. Energy 43, 17064.

    CAS  Google Scholar 

  56. 56.

    S. Moniri, T. Van Cleve, and S. Linic (2017). J. Catal. 345, 1.

    CAS  Google Scholar 

  57. 57.

    Y. Hao, X. Wang, Y. Zheng, J. Shen, J. Yuan, A. Wang, L. Niu, and S. Huang (2016). Int. J. Hydrog. Energy 41, 9303.

    CAS  Google Scholar 

  58. 58.

    M. I. Prodromidis, E. M. Zahran, A. G. Tzakos, and L. G. Bachas (2015). Int. J. Hydrog. Energy 40, 6745.

    CAS  Google Scholar 

  59. 59.

    X. Jin, X. Wang, Y. Zhang, H. Wang, and Y. Yang (2018). Int. J. Hydrog. Energy 43, 13440.

    CAS  Google Scholar 

  60. 60.

    J. N. Tiwari, R. N. Tiwari, and K. L. Lin (2011). Nano Res. 4, 541.

    CAS  Google Scholar 

  61. 61.

    L. Liu, E. Pippel, R. Scholz, and U. Gösele (2009). Nano Lett. 9, 4352.

    CAS  PubMed  Google Scholar 

  62. 62.

    Y. Ma, Q. Wang, Y. Miao, Y. Lin, and R. Li (2018). Appl. Surf. Sci. 450, 413.

    CAS  Google Scholar 

  63. 63.

    F. Zhang, Z. Wang, K. Q. Xu, J. Xia, Q. Liu, and Z. Wang (2018). Int. J. Hydrog. Energy 43, 16302.

    CAS  Google Scholar 

  64. 64.

    H. Liu, D. Yang, Y. Bao, X. Yu, and L. Feng (2019). J. Power Sources 434, 226754.

    CAS  Google Scholar 

  65. 65.

    J. Yu, T. Dai, Y. Cao, Y. Qu, Y. Li, J. Li, Y. Zhao, and H. Gao (2018). J. Colloid Interf. Sci. 524, 360.

    CAS  Google Scholar 

  66. 66.

    H. Xu, K. Zhang, B. Yan, J. Zhong, S. Li, and Y. Du (2017). New J. Chem. 41, 3048.

    CAS  Google Scholar 

  67. 67.

    K. Volkan Özdokur, B. Bozkurt Çırak, B. Caglar, Ç. Çırak, S. Morkoç Karadeniz, T. Kılınç, Y. Erdoğan, and A. Ercan Ekinci (2018). Vacuum 155, 242.

  68. 68.

    Y. Li, L. Tang, and J. Li (2009). Electrochem. Commun. 11, 846.

    Google Scholar 

  69. 69.

    S. Ali, I. Khan, S. A. Khan, M. Sohail, R. Ahmed, A. Rehman, M. Shahid Ansari, and M. A. Morsy (2017). J. Electroanal. Chem. 795, 17.

    CAS  Google Scholar 

  70. 70.

    H. Tong, H. L. Li, and X. G. Zhang (2007). Carbon 45, 2424.

    CAS  Google Scholar 

  71. 71.

    M. S. Ekrami-Kakhki, N. Farzaneh, S. Abbasi, H. Beitollahi, and S. A. Ekrami-Kakhki (2018). Electron. Mater. Lett. 14, 616.

    CAS  Google Scholar 

  72. 72.

    Y. Z. Su, C. W. Xu, J. P. Liu, and Z. Q. Liu (2009). J. Power Sources 194, 295.

    CAS  Google Scholar 

  73. 73.

    M. Noroozifar, M. Khorasani-Motlagh, R. Khaleghian-Moghadam, M. S. Ekrami-Kakhki, and M. Shahraki (2013). J. Solid State Chem. 201, 41.

    CAS  Google Scholar 

  74. 74.

    I. Becerık, S. Sǖzer, and F. Kadirgan (2001). J. Electroanal. Chem. 502, 118.

    Google Scholar 

  75. 75.

    M. S. Ekrami-Kakhki, S. Abbasi, and N. Farzaneh (2018). Anal. Bioanal. Electrochem. 10, 1548.

    CAS  Google Scholar 

  76. 76.

    S. Abbasi, S. M. Zebarjad, S. H. N. Baghban, and A. Youssefi (2014). Bull. Mater. Sci. 37, 1439.

    CAS  Google Scholar 

  77. 77.

    M. S. Ekrami-Kakhki, S. Abbasi, and N. Farzaneh (2018). Electron. Mater. Lett. 14, 70.

    CAS  Google Scholar 

  78. 78.

    M. Namvar-Mahboub and M. Pakizeh (2014). Korean J. Chem. Eng. 31, 327.

    CAS  Google Scholar 

  79. 79.

    N. Roozban, S. Abbasi, and M. Ghazizadeh (2017). J. Mater. Sci. Mater. Electron. 28, 6047.

    CAS  Google Scholar 

Download references


Technical and financial support of this work is provided by Esfarayen University of Technology.

Author information



Corresponding author

Correspondence to Mehri-Saddat Ekrami-Kakhki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ekrami-Kakhki, MS., Pouyamanesh, S., Abbasi, S. et al. Enhanced Electrocatalytic Performance of Pt Nanoparticles Incorporated CeO2 Nanorods on Polyaniline-Chitosan Support for Methanol Electrooxidation (Experimental and Statistical Analysis). J Clust Sci 32, 363–378 (2021). https://doi.org/10.1007/s10876-020-01795-7

Download citation


  • Nanorods
  • Polyaniline
  • Methanol electro-oxidation
  • Statistical approach