Thermolytic Conversion of Copper (II) Based Coordination Polymer into Copper Oxide–Carbon Nanocomposite for Selective Removal of Cd (II) from Aqueous Solution

Abstract

In this work, we report the synthesis of a Cu (II) based metal–organic frameworks (HKUST-1) by mechanochemical method and metal-oxide–carbon nanocomposite (CuO@C) as thermolysis products. The prepared HKUST-1 and composite were characterized by elemental CHNS/O microanalysis, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM–EDX), transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), thermogravimetric analyses (TGA), fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD) and Brunauer–Emmett–Teller (BET) analysis. The TEM analysis, confirmed the CuO nanoparticles in the porous carbon matrix. The synthesized compounds were further investigated for adsorption of Cd (II) from aqueous solution. The composite exhibited a high cadmium uptake of 132.6 mg g−1 compared to the parent HKUST-1, and fast kinetics with a kinetic rate constant k2 of 0.031 g mg−1 min−1, which is greater than some existing adsorbents for cadmium adsorption from aqueous solution under similar condition. The cadmium adsorption on CuO@C composite showed pH, temperature and time dependence to the prepared HKUST-1, as well as greater surface area and pore volume. The CuO@C composite can be readily recycled and regenerated without significant loss of the cadmium adsorption capacity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Y. Shen (2015). J. Mater. Chem. A. 3, 13188.

    Google Scholar 

  2. 2.

    W. Yao, C. Shen, and Y. Lu (2013). Compos. Sci. Technol. 87, 13.

    Article  Google Scholar 

  3. 3.

    S. Flandrois and B. Simon (1999). Carbon N. Y. 37, 180.

    Article  Google Scholar 

  4. 4.

    Z. Hu, M. P. Srinivasan, and Y. Ni (2000). Adv. Mater. 12, 65.

    Article  Google Scholar 

  5. 5.

    X. Tong, Y. Qin, and X. Guo (2012). Small 8, 3395.

    Google Scholar 

  6. 6.

    X. Sun (2003). J. Dispers. Sci. Technol. 24, 567.

    CAS  Google Scholar 

  7. 7.

    T.-H. Kim, K.-B. Lee, and J.-W. Choi (2013). Biomaterials 34, 8670.

    Google Scholar 

  8. 8.

    S. Miyanaga, H. Yasuda, and A. Hiwara (1990). J. Macromol. Sci. 27, 1361.

    Article  Google Scholar 

  9. 9.

    G. Férey (2008). Chem. Soc. Rev. 37, 214.

    Article  Google Scholar 

  10. 10.

    S. H. Jhung, N. A. Khan, and Z. Hasan (2012). CrystEngComm 14, 7109.

    Article  Google Scholar 

  11. 11.

    J.-J. Chen, Y.-T. Chen, and D. S. Raja (2015). Sci. Technol. Adv. Mater. 16, 54203.

    Article  Google Scholar 

  12. 12.

    J. Liu, L. Chen, and H. Cui (2014). Chem. Soc. Rev. 43, 6061.

    Google Scholar 

  13. 13.

    W. Chaikittisilp, K. Ariga, and Y. Yamauchi (2013). J. Mater. Chem. A 1, 19.

    Article  Google Scholar 

  14. 14.

    J.-K. Sun and Q. Xu (2014). Energy Environ. Sci. 7, 2100.

    Google Scholar 

  15. 15.

    H. Yue, Z. Shi, and Q. Wang (2014). ACS Appl. Mater. Interfaces 6, 17074.

    Article  Google Scholar 

  16. 16.

    X. Yan, N. Lu, and B. Fan (2015). CrystEngComm 17, 6433.

    Google Scholar 

  17. 17.

    Z. Feng, S. Zhu, and D. R. Martins de Godoi (2012). Anal. Chem. 84, 3770.

    Google Scholar 

  18. 18.

    M. P. Waalkes (2000). J. Inorg. Biochem. 79, 244.

    Article  Google Scholar 

  19. 19.

    M. Xu, P. Hadi, G. Chen, and G. McKay (2014). J. Hazard. Mater. 273, 123.

    Article  Google Scholar 

  20. 20.

    M. E. Clares, M. G. Guerrero, and M. García-González (2015). Int. J. Environ. Sci. Technol. 12, 1798.

    Article  Google Scholar 

  21. 21.

    Y. Ge, D. Xiao, Z. Li, and X. Cui (2014). J. Mater. Chem. A 2, 2145.

    Google Scholar 

  22. 22.

    S. S. Gupta and K. G. Bhattacharyya (2012). Phys. Chem. Chem. Phys. 14, 6723.

    Google Scholar 

  23. 23.

    Y. Wang, G. Ye, and H. Chen (2015). J. Mater. Chem. A 3, 15298.

    Google Scholar 

  24. 24.

    H.-T. Fan, J.-X. Liu, and H. Yao (2014). Ind. Eng. Chem. Res. 53, 378.

    Google Scholar 

  25. 25.

    A. Pichon, A. Lazuen-Garay, and S. L. James (2006). CrystEngComm 8, 214.

    Article  Google Scholar 

  26. 26.

    A. El-Trass, H. ElShamy, I. El-Mehasseb, and M. El-Kemary (2012). Appl. Surf. Sci. 258, 3001.

    Article  Google Scholar 

  27. 27.

    J.-J. Chen, Y.-T. Chen, and D. S. Raja (2015). Materials 8, 5347.

    Google Scholar 

  28. 28.

    R. Qadeer and S. Akhtar (2005). Turk. J. Chem. 29, 100.

    Google Scholar 

  29. 29.

    M. Ajmal, R. A. K. Rao, R. Ahmad, and J. Ahmad (2000). J. Hazard. Mater. 79, 131.

    Article  Google Scholar 

  30. 30.

    F. Ge, M.-M. Li, H. Ye, and B.-X. Zhao (2012). J. Hazard. Mater. 211, 372.

    Google Scholar 

  31. 31.

    F. A. B. Silva and F. L. Pissetti (2014). J. Colloid Interfaces Sci. 416, 100.

    Article  Google Scholar 

  32. 32.

    I. Langmuir (1918). J. Am. Chem. Soc. 40, 1403.

    Article  Google Scholar 

  33. 33.

    Z. Hasan, N. A. Khan, and S. H. Jhung (2016). Chem. Eng. J. 284, 1413.

    Article  Google Scholar 

  34. 34.

    A. Dubey, A. Mishra, and S. Singhal (2014). Int. J. Environ. Sci. Technol. 11, 1050.

    Article  Google Scholar 

  35. 35.

    X. Weng, S. Lin, Y. Zhong, and Z. Chen (2013). Chem. Eng. J. 229, 34.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the School of Chemistry, University of KwaZulu-Natal, Durban, South Africa for spectroscopy analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elias E. Elemike.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 740 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oseghale, C.O., Elemike, E.E., Ayi, A.A. et al. Thermolytic Conversion of Copper (II) Based Coordination Polymer into Copper Oxide–Carbon Nanocomposite for Selective Removal of Cd (II) from Aqueous Solution. J Clust Sci 32, 319–326 (2021). https://doi.org/10.1007/s10876-020-01790-y

Download citation

Keywords

  • Metal–organic frameworks
  • Nanostructure
  • Adsorption
  • Metal-oxide–carbon
  • Composites