A Hybrid Density Functional Theory Investigation of the \(({\text {CeO}}_2)_{6}\) Clusters in the Cationic, Neutral, and Anionic States


We report a quantum-chemistry investigation of the cationic, neutral, and anionic \(({\text {CeO}}_2)_{6}\) clusters to obtain an atom-level understanding of the effects induced by the release or addition of a single electron on the physical and chemical properties of small oxide clusters. Our ab initio calculations are based on density functional theory (DFT) within the hybrid Heyd–Scuseria–Ernzerhof (HSE06) and semilocal Perdew–Burke–Ernzerhof (PBE) functional. Compared with PBE, the HSE06 functional changes the relative stability of the neutral \(({\text {CeO}}_2)_{6}\) isomers, in particular, for structures with small total energy differences, e.g., about \(100 \, \text {meV/fu}\), which can be explained by the enhancement of the exchange interactions. The addition of an electron to the \(({\text {CeO}}_2)_{6}\) clusters change the oxidation state of a single \(\text {Ce}\) atom from + IV to + III, which drives a local distortion and the formation of a small polaron near to the \({\text {Ce}}^{\text{III}}\) cation. In contrast, the release of an electron induces the formation of a localized hole on one of the \(\text {O}\) atoms combined with local structural distortions. For the anionic and cationic clusters in the putative global minimum configurations, we found a strain energy induced by the distortion of 1.00 and 1.31 eV, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5



density functional theory






Fritz–Haber Institute ab initio molecular simulations


  1. 1.

    Q. Fu, H. Saltsburg and M. Flytzani-Stephanopoulos (2003). Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science301, 935–938.

    CAS  Article  Google Scholar 

  2. 2.

    R. J. Gorte (2010). Ceria in catalysis: from automotive applications to the water-gas shift reaction. AlChE J. 56, 1126–1135.

    CAS  Google Scholar 

  3. 3.

    A. F. Diwell, R. R. Rajaram, H. A. Shaw and T. J. Truex (1991). The role of ceria in three-way catalysts. Stud. Surf. Sci. Catal. 71, 139–152.

    CAS  Article  Google Scholar 

  4. 4.

    A. Trovarelli Catalysis by ceria and related materials, 1st ed (World Scientific Publishing Company, Singapore, 2002).

    Book  Google Scholar 

  5. 5.

    A. Beste and S. H. Overbury (2015). Pathways for ethanol dehydrogenation and dehydration catalyzed by ceria (111) and (100) surfaces. J. Phys. Chem. C2015, 2447–2455.

    Article  Google Scholar 

  6. 6.

    Z.-X. Zhou, L.-N. Wang, Z.-Y. Li, S.-G. He and T.-M. Ma (2016). Oxidation of \({\text{ SO }}_{2}\) to \({\text{ SO }}_{3}\) by cerium oxide cluster cations \({\text{ Ce }}_{2} {\text{ O }}_{4}{}^{+}\) and \({\text{ Ce }}_{3} {\text{ O }}_{6}{}^{+}\). J. Phys. Chem. C120, 3843–3848.

    CAS  Article  Google Scholar 

  7. 7.

    X.-L. Ding, X.-N. Wu, Y.-X. Zhao, J.-B. Ma and S.-G. He (2011). Double-oxygen-atom transfer in reactions of \({\text{ Ce }}_{m} {\text{ O }}_{2m} {}^{+}\) (m= 2–6) with \({\text{ C }}_{2} {\text{ H }}_{2}\). ChemPhysChem12, 2110–2117.

    CAS  Article  Google Scholar 

  8. 8.

    S. Hirabayashi and M. Ichihashi (2013). Oxidation of CO and NO on composition-selected cerium oxide cluster cations. J. Phys. Chem. A117, 9005–9010.

    CAS  Article  Google Scholar 

  9. 9.

    J. A. Felton, M. Ray, S. E. Waller, J. O. Kafader and C. C. Jarrold (2014). \({\text{ Ce }}_{x} {\text{ O }}_{y} - (\text{ x }= 2{-}3) + {\text{ D }}_2\text{ O }\) reactions: stoichiometric cluster formation from deuteroxide decomposition and anti-arrhenius behavior. J. Phys. Chem. A118, 9960–9969.

    CAS  Article  Google Scholar 

  10. 10.

    I. E. Wachs and K. Routray (2012). Catalysis science of bulk mixed oxides. ACS Catal. 2, 1235–1246.

    CAS  Article  Google Scholar 

  11. 11.

    M. V. Ganduglia-Pirovano, J. L. F. Da Silva and J. Sauer (2009). Density functional calculations of the structure of near-surface oxygen vacancies and electron localization \(\text{ CeO }_2\)(111). Phys. Rev. Lett. 102, 026101.

    Article  Google Scholar 

  12. 12.

    L. Sun, X. Huang, L. Wang and A. Janotti (2017). Disentangling the role of small polarons and oxygen vacancies in \({\text{ CeO }}_{2}\). Phys. Rev. B95, 245101.

    Article  Google Scholar 

  13. 13.

    J. L. F. Da Silva, M. V. Ganduglia-Pirovano, J. Sauer, V. Bayer and G. Kresse (2007). Hybrid functionals applied to rare-earth oxides: the example of ceria. Phys. Rev. B75, 045121.

    Article  Google Scholar 

  14. 14.

    M. J. Piotrowski, P. Tereshchuk and J. L. F. Da Silva (2014). Theoretical investigation of small transition-metal clusters supported on the \({\text{ CeO }}_{2}\)(111) surface. J. Phys. Chem. C188, 21438–21446.

    Article  Google Scholar 

  15. 15.

    P. Tereshchuk, R. L. H. Freire, C. G. Ungureanu, Y. Seminovski, A. Kiejna and J. L. F. Da Silva (2015). The role of charge transfer in the oxidation state change of Ce atoms in the \({\text{ TM }}_{13} - {\text{ CeO }}_{2}\)(111) systems (\(\text{ TM } = \text{ Pd }, \text{ Ag }, \text{ Pt }, \text{ Au }\)): A DFT+U investigation. Phys. Chem. Chem. Phys. 17, 13520–13530.

    CAS  Article  Google Scholar 

  16. 16.

    T. Nagata, J. W. J. Wu, M. Nakano, K. Ohshimo and F. Misaizu (2019). Geometrical structures of gas-phase cerium oxide cluster cations studied by ion mobility mass spectrometry. J. Phys. Chem. C123, 16641–16650.

    CAS  Article  Google Scholar 

  17. 17.

    S. T. Akin, S. G. Ard, B. E. Dye, H. F. Schaefer and M. A. Duncan (2016). Photodissociation of cerium oxide nanocluster cations. J. Phys. Chem. A120, 2313–2319.

    CAS  Article  Google Scholar 

  18. 18.

    A. M. Burow, T. Wende, M. Sierka, R. Włodarczyk, J. Sauer, P. Claes, L. Jiang, G. Meijer, P. Lievens and K. R. Asmis (2011). Structures and vibrational spectroscopy of partially reduced gas-phase cerium oxide clusters. Phys. Chem. Chem. Phys. 13, 19393–19400.

    CAS  Article  Google Scholar 

  19. 19.

    L. Zibordi-Besse, Y. Seminovski, I. Rosalino, D. Guedes-Sobrinho and J. L. F. D. Silva (2018). Physical and chemical properties of unsupported \(({\text{ MO }}_2)_{n}\) clusters for M = Ti, Zr, or \(\text{ Ce }\) and n = 1–15: a density functional theory study combined with the tree-growth scheme and euclidean similarity distance algorithm. J. Phys. Chem. C122, 27702–27712.

    CAS  Article  Google Scholar 

  20. 20.

    C. Chuan, C. Hui-Lung, W. Meng-Hsiung, J. Shin-Pon, J.-G. Chang and C.-S. Chang (2008). Structural properties of \(({\text{ CeO }}_2)_{n}\) (n= 1–5) nanoparticle: molecular mechanics and first principle studies. Chin. J. Catal. 29, 1117–1121.

    Article  Google Scholar 

  21. 21.

    S. F. Li, H. Lu, P. Li, Z. Yang and Z. X. Guo (2008). First-principles local density approximation (generalized gradient approximation) + U study of catalytic \({\text{ Ce }}_{n} {\text{ O }}_{m}\) clusters: U value differs from bulk. J. Chem. Phys. 128, 164718.

    CAS  Article  Google Scholar 

  22. 22.

    J. Heyd, G. E. Scuseria and M. Ernzerhof (2003). Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207–8215.

    CAS  Article  Google Scholar 

  23. 23.

    J. P. Perdew, K. Burke and M. Ernzerhof (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868.

    CAS  Article  Google Scholar 

  24. 24.

    V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter and M. Scheffler (2009). Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196.

    CAS  Article  Google Scholar 

  25. 25.

    V. Havu, V. Blum, P. Havu and M. Scheffler (2009). Efficient \(O(N)\) integration for all-electron electronic structure calculation using numeric basis functions. J. Comput. Phys. 228, 8367–8379.

    CAS  Article  Google Scholar 

  26. 26.

    M. Chen and D. A. Dixon (2013). Tree growth—hybrid genetic algorithm for predicting the structure of small \(({\text{ TiO }}_2)_{n}\), \(n = 2-13\). Nanoclusters. J. Chem. Theory Comput. 9, 3189–3200.

    CAS  Article  Google Scholar 

  27. 27.

    R. Gehrke and K. Reuter (2009). Assessing the efficiency of first-principles basin-hopping sampling. Phys. Rev. B79, 085412.

    Article  Google Scholar 

  28. 28.

    H. M. Cezar, G. G. Rondina and J. L. F. Da Silva (2017). Parallel tempering monte carlo combined with clustering euclidean metric analysis to study the thermodynamic stability of Lennard–Jones nanoclusters. J. Chem. Phys. 146, 064114.

    Article  Google Scholar 

  29. 29.

    J. Nocedal, J. Stephen and S. J. Wright Numerical optimization (Springer, Berlin, 2006).

    Google Scholar 

  30. 30.

    J. L. F. Da Silva (2011). Effective coordination concept applied for phase change \((\text{ GeTe })_{m}~({\text{ Sb }}_2 {\text{ Te }}_3)_{n}\) compounds. J. Appl. Phys. 109, 023502.

    Article  Google Scholar 

Download references


The authors gratefully acknowledge support from FAPESP (São Paulo Research Foundation, Grant Number 2017/11631-2), Shell and the strategic importance of the support given by ANP (Brazils National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. This study was financed in part by the National Counsel of Technological and Scientific Development (fellowships for Mailde S. Ozório and Augusto C. H. Da Silva). The authors acknowledge also the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercomputer, which have contributed to the research results reported within this paper. http://sdumont.lncc.br. We acknowledges also the Advanced Scientific Computational Laboratory (University of São Paulo) and the infrastructure provided to our computer cluster by the São Carlos Center of Informatics, University of São Paulo.

Author information



Corresponding author

Correspondence to Juarez L. F. Da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 154 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozório, M.S., Da Silva, A.C.H. & Da Silva, J.L.F. A Hybrid Density Functional Theory Investigation of the \(({\text {CeO}}_2)_{6}\) Clusters in the Cationic, Neutral, and Anionic States. J Clust Sci 31, 1213–1220 (2020). https://doi.org/10.1007/s10876-019-01728-z

Download citation


  • Cerium oxide
  • Clusters
  • Density functional theory