Application of Nanotechnology in Diagnosis and Disease Management of White Spot Syndrome Virus (WSSV) in Aquaculture

Abstract

Nanotechnology a multidisciplinary field involves the design and production of functional systems at the molecular level. In aquaculture, the application of nanotechnology it’s still at infant stage and it potent enough to solve many issues related to nutrition, animal production, reproduction, disease diagnosis, prevention and treatment. Worldwide, during the last decade though shrimp culture has been one of the most prevalent practices in marine industry and it has been threatened by viral diseases frequently. Among various shrimp viral pathogens, white spot syndrome virus (WSSV) is exceedingly pathogenic and conscientious for huge economic loss in shrimp culture industry. In this review, the application of nanotechnology in diagnosis and management of WSSV in aquaculture is discussed in detail.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    FAO. The State of World Fisheries and Aquaculture (Rome, FAO, 2012).

  2. 2.

    T. W. Flegel (2012). J. Invertebr. Pathol. 110, 166.

    PubMed  Google Scholar 

  3. 3.

    D. V. Lightner, R. M. Redman, C. R. Pantoja, K. F. Tang, B. L. Noble, P. Schofield, L. L. Mohney, L. M. Nunan, and S. A. Navarro (2012). J. Invertebr. Pathol. 110, 174.

    CAS  PubMed  Google Scholar 

  4. 4.

    S. M. Moss, D. R. Moss, S. M. Arce, D. V. Lightner, and J. M. Lotz (2012). J. Invertebr. Pathol. 110, 247.

    PubMed  Google Scholar 

  5. 5.

    T. W. Flegel (2006). Aquaculture 258, 1.

    Google Scholar 

  6. 6.

    T.W. Flegel, D.V. Lightner, C.F. Lo, L. Owens, in Shrimp Disease Control: Past, Present and Future, eds. by M.G. Bondad-Reantaso, C.V. Mohan, M. Crumlish, R.P. Subasinghe. Dis Asian Aquacul VI (2008), pp. 355.

  7. 7.

    P. Chaivisuthangkura, S. Longyant, and P. Sithigorngul (2014). World J. Virol. 3, 1.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Y. Takahashi, T. Itama, M. Kondo, M. Maeda, R. Fujii, S. Tomonaga, K. Supamattaya, and S. Boonyaratpalin (1994). Fish Pathol. 29, 121.

    Google Scholar 

  9. 9.

    C. S. Wang, K. F. J. Tang, G. H. Kou, and S. N. Chen (1997). J. Fish Dis. 20, 323.

    Google Scholar 

  10. 10.

    E. C. Nadala, L. M. Tapay, S. Cao, and P. C. Loh (1997). J. Virol. Method. 69, 39.

    CAS  Google Scholar 

  11. 11.

    E. C. B. Nadala and P. C. Loh (2000). J. Virol. Methods 84, 175.

    PubMed  Google Scholar 

  12. 12.

    SahulHameed, M. Anilkumar, M. L. StephenRaj, and K. Jayaraman (1998). Aquaculture 160, 31.

    CAS  Google Scholar 

  13. 13.

    Y. Takahashi, T. Ltami, M. Maeda, N. Suzuki, J. Kasornchandra, K. Supamattaya, R. Khongpradit, S. Boonyaratpalin, M. Kondo, K. Kawai, R. Kusuda, I. Hirono, and T. Aoki (1996). J. Fish Dis. 19, 399.

    CAS  Google Scholar 

  14. 14.

    Kim, P. Kim, S. Sohn, D. Sim, M. Park, M. Heo, T. H. Lee, J. Lee, H. Jun, and K. Jang (1998). J. Fish Dis. 21, 11.

    CAS  PubMed  Google Scholar 

  15. 15.

    L. M. Nunan, B. T. Poulos, and D. V. Lightner (1998). Aquaculture 160, 19.

    Google Scholar 

  16. 16.

    L. M. Tapay, E. C. Nadala, and P. C. Loh (1999). J. Virol. Methods 82, 39.

    CAS  PubMed  Google Scholar 

  17. 17.

    P. S. Chang, C. H. Chen, and Y. C. Wang (1998). Aquaculture 164, 233.

    CAS  Google Scholar 

  18. 18.

    S. Sathish, S. Musthaq, A. S. Hameed, and R. B. Narayanan (2004). Aquaculture 242, 69.

    CAS  Google Scholar 

  19. 19.

    A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode (2013). Mol. Pharm. 10, 831.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    F. Airo Ambrosi and A. Merkoci (2010). Anal. Chem. 82, 1151.

    CAS  PubMed  Google Scholar 

  21. 21.

    Chirathaworn, T. Chantaramalai, A. Sereemaspun, N. Kongthong, and D. Suwancharoen (2011). Comp. Immunol. Microbiol. Infect. 34, 31.

    Google Scholar 

  22. 22.

    F. Duan, Y. Yu-Qi, and C. Hua (2008). Analyst 133, 1250.

    CAS  PubMed  Google Scholar 

  23. 23.

    Y. Chia-Hsien, C. Y. Hung, T. Chain Chang, E. H. Ping Lin, and Y. Cheng Lin (2009). Microfluid. Nanofluid. 6, 85.

    Google Scholar 

  24. 24.

    Z. Peng, Z. Chen, J. Jiang, X. Zhang, G. Shen, and R. Yu (2007). Anal. Chim. Acta. 583, 40.

    CAS  PubMed  Google Scholar 

  25. 25.

    S.S. Mishra, P. Swain, B.P. Mohanty, B.K. Das, in Nat. Seminar on Priorities in Fisheries and Aquaculture (2017), p. 248.

  26. 26.

    F. H. C. Chua, J. J. Loo, and J. Y. Wee Dis Asian Aquacult (Fish Health Section, Asian Fisheries Society, Manila, 1995), p. 235.

    Google Scholar 

  27. 27.

    Lightner Handbook of Shrimp Pathology and Diagnostic Procedures for Diseases of Cultured Penaeid Shrimp (World Aquaculture Society, Baton Rouge, 1996).

    Google Scholar 

  28. 28.

    J. Rodriguez, B. Bayot, Y. Amano, F. Panchana, I. De Blas, V. Alday, and J. Caleron (2003). J. Fish Dis. 26, 439.

    CAS  PubMed  Google Scholar 

  29. 29.

    Anonymous (1994). Asian Shrimp News 20, 2.

    Google Scholar 

  30. 30.

    K. M. Shankar and C. V. Mohan (1998). J. Aqua. Trop. 13, 43.

    Google Scholar 

  31. 31.

    A. P. Sangamaheswaran and M. J. P. Jeyaseelan (2001). ICLARM Quart. 24, 16.

    Google Scholar 

  32. 32.

    K. Momoyama, M. Hiraoka, H. Nakano, H. Koube, K. Inouye, and N. O. Oseko (1994). Fish Pathol. 29, 141.

    Google Scholar 

  33. 33.

    Y. Takahashi, T. Itami, and M. Kondo (1995). Fish Pathol. 30, 141.

    Google Scholar 

  34. 34.

    C. F. Lo and G. H. Kou (1998). Fish Pathol. 33, 365.

    CAS  Google Scholar 

  35. 35.

    C. V. Doan, A. T. T. Pham, T. X. Ngo, P. H. Le, and H. V. Nguyen (2009). Israeli J. Aquacul. Bamidgeh. 61, 248.

    Google Scholar 

  36. 36.

    P. J. Walker and C. V. Mohan (2009). Rev. Aquacul. 1, 125.

    Google Scholar 

  37. 37.

    Rosenberry World Shrimp Farming 2000 (Shrimp News International, San Diego, 2001), pp. 13–324.

    Google Scholar 

  38. 38.

    K. Inouye, S. Miwa, N. Oseko, H. Nakano, T. Kimura, K. Momoyama, and M. Hiraoka (1994). Fish Pathol. 29, 149.

    Google Scholar 

  39. 39.

    D. V. Lightner, R. M. Redman, B. T. Poulos, L. M. Nunan, J. L. Mari, and K. W. Hasson (1997). Rev. Sci. Tech. 16, 146.

    CAS  PubMed  Google Scholar 

  40. 40.

    S. Hossain, A. Chakraborty, B. Joseph, S. Otta, I. Karunasagar, and I. Karunasagar (2001). Aquaculture 198, 1.

    Google Scholar 

  41. 41.

    S. Durand, K. F. J. Tang, and D. Lightner (2000). J. Aquatic. Animal Health. 12, 128.

    Google Scholar 

  42. 42.

    C. F. Lo, C. H. Ho, C. H. Chen, K. F. Liu, Y. L. Chiu, P. Y. Yeh, S. E. Peng, H. C. Hsu, H. C. Liu, C. F. Chang, M. S. Su, C. H. Wang, and G. H. Kou (1997). Dis. Aquat. Organ. 30, 53.

    Google Scholar 

  43. 43.

    P. Mohan, K. Shankar Sudha, and A. Hegde (1997). Curr. Sci. 73, 109.

    Google Scholar 

  44. 44.

    G. Kou, C. Chen, C. Ho, C. Lo, in World Aquacul. Soc. (Baton Rouge, 1997), p. 262.

  45. 45.

    K. A. Vanpatten, L. M. Nunan, and D. V. Lightner (2004). Aquaculture 241, 31.

    Google Scholar 

  46. 46.

    C. F. Lo, C. H. Ho, S. E. Peng, C. H. Chen, H. C. Hsu, Y. L. Chiu, C. F. Chang, K. F. Liu, M. S. Su, C. H. Wang, and G. H. Kou (1996). Dis. Aquat. Organ. 27, 215.

    Google Scholar 

  47. 47.

    P. Kanchanaphum, C. Wongteerasupaya, N. Sitidilokratana, V. Boonsaeng, S. Panyim, A. Tassanakajon, B. Withyachumnarnkul, and T. W. Flegel (1998). Dis. Aquat. Organ 34, 1.

    CAS  PubMed  Google Scholar 

  48. 48.

    G. Kou, S. Peng, Y. Chiu, and C. Lo Tissue distribution of white spot syndrome virus (WSSV) in shrimp and crabs. in T. W. Flegel (ed.), Advances in Shrimp Biotechnology (National Centre for Genetic Engineering and Biotechnology, Bangkok, 1998), p. 267.

    Google Scholar 

  49. 49.

    A. S. Sahul Hameed, K. Yoganandhan, S. Sathish, M. Rasheed, V. Murugan, and K. Jayaraman (2001). Aquaculture 201, 179.

    Google Scholar 

  50. 50.

    A. S. Sahul Hameed, G. Balasubramanian, S. Syed Musthaq, and K. Yoganandhan (2003). Dis. Aquatic. Organ. 57, 157.

    Google Scholar 

  51. 51.

    A. S. Sahul Hameed, M. X. Charles, and M. Anilkumar (2000). Aquaculture 183, 207.

    Google Scholar 

  52. 52.

    Z. Shi, C. Huang, J. Zhang, D. Chen, and J. Bonami (2000). J. Fish Diseases 23, 285.

    Google Scholar 

  53. 53.

    R. B. PramodKiran, K. V. Rajendran, S. J. Jung, and M. J. Oh (2002). J. Fish Diseases 25, 201.

    Google Scholar 

  54. 54.

    K. V. Rajendran, K. K. Vijayan, T. C. Santiago, and R. M. Krol (1999). J. Fish Diseases 22, 183.

    Google Scholar 

  55. 55.

    Y. C. Wang, C. F. Lo, P. S. Chang, and G. H. Kou (1998). Aquaculture 164, 221.

    Google Scholar 

  56. 56.

    V. Corbel, Z. Zuprisal, Z. Shi, C. Huang, J. Arcier, and J. Bonami (2001). J. Fish Dis. 24, 377.

    Google Scholar 

  57. 57.

    P. Jiravanichpaisal, E. Bangyeekhun, and K. I. S. Soderhall (2001). Dis. Aquat. Organ. 47, 151.

    CAS  PubMed  Google Scholar 

  58. 58.

    Edgerton (2004). Dis. Aquat. Organ 59, 187.

    PubMed  Google Scholar 

  59. 59.

    P. Jiravanichpaisal, K. Soderhall, and I. Siderhall (2004). Fish Shellfish Immunol. 17, 265.

    CAS  PubMed  Google Scholar 

  60. 60.

    K. Supamattaya, R. Hoffman, S. Boonyaratpalin, and P. Kanchanaphum (1998). Dis. Aquat. Organ. 32, 79.

    Google Scholar 

  61. 61.

    S. Otta, G. Shubha, B. Joseph, A. Chakraborty, I. Karunasagar, and I. Karunasagar (1999). Dis. Aquat. Organ. 38, 67.

    Google Scholar 

  62. 62.

    D. C. Yan, S. L. Dong, J. Huang, X. M. Yu, M. Y. Feng, and X. Y. Liu (2004). Dis. Aquat. Organ. 59, 69.

    PubMed  Google Scholar 

  63. 63.

    Ramırez-Douriet, R. De Silva-Davila, J. Mendez-Lozano, D. Escobedo-Urias, I. Leyva-Arana, and M. Lopez-Meyer, in White spot syndrome virus detection in zooplankton of coastal lagoons and shrimp commercial ponds in Sinaloa, Mexico. 135th Annual Meeting of the American Fisheries S (ed. by The American Fisheries Society), poster (Anchorage, Alaska, 2005).

  64. 64.

    T. Flegel (1997). World J. Microbiol. Biotechnol. 13, 433.

    Google Scholar 

  65. 65.

    Q. Li, J. Zhang, Y. Chen, and F. Yang (2003). Dis. Aquat. Org. 57, 261.

    PubMed  Google Scholar 

  66. 66.

    W. K. Liu, Y. S. Chang, A. H. J. Wang, G. H. Kou, and C. F. Lo (2007). J. Virol. 81, 1461.

    CAS  PubMed  Google Scholar 

  67. 67.

    D. V. Lightner and R. M. Redman (1998). Aquaculture 164, 201.

    Google Scholar 

  68. 68.

    T. Bell, D. Lightner, World Aqua. Soc. (Baton Rouge, LA USA, 1988), p. 114.

  69. 69.

    S. E. Peng, C. F. Lo, C. H. Ho, C. F. Chang, and G. H. Kou (1998). Aquaculture 164, 253.

    CAS  Google Scholar 

  70. 70.

    P. C. Thakur, F. Corsin, J. F. Turnbull, K. M. Shakar, N. V. Hao, P. A. Padiyar, M. Madhusudhan, K. I. Morgan, and C. V. Mohan (2002). Dis. Aquat. Org. 49, 235.

    CAS  PubMed  Google Scholar 

  71. 71.

    S. V. Durad and D. V. Lighhtner (2002). J. Fish Dis. 9, 381.

    Google Scholar 

  72. 72.

    P. S. Chang, C. F. Lo, Y. C. Wang, and G. H. Kou (1996). Dis. Aquat. Organ. 27, 131.

    Google Scholar 

  73. 73.

    W. B. Zhan, Y. Wang, Z. Zhang, and H. Fukuda (2000). Chinese J. Oceanol. Limnol. 18, 241.

    CAS  Google Scholar 

  74. 74.

    P. Khawsak, W. Deesukon, P. Chaivisuthangkura, and W. Sukhumsirichart (2008). Mol. Cell Probes. 22, 177.

    CAS  PubMed  Google Scholar 

  75. 75.

    L. Ko, Y. Ko, S. Mao, and G. Tseng (2003). Febas. J. 17, A1001.

    Google Scholar 

  76. 76.

    T. Anil, K. Shankar, and C. Mohan (2002). Dis. Aquat. Organ. 51, 67.

    CAS  PubMed  Google Scholar 

  77. 77.

    P. Chaivisuthangkura, L. Siwaporn, H. Warunee, S. Pattarin, R. Sombat, and S. Paisarn (2010). J. Virol. Methods. 163, 433.

    CAS  PubMed  Google Scholar 

  78. 78.

    W. Liu, Y. Wang, D. Tian, Z. Yin, and J. Kwang (2002). Dis. Aquat. Organ. 49, 11.

    CAS  PubMed  Google Scholar 

  79. 79.

    R. Patil, K. Palaksha, T. Anil, P. Guruchannabasavanna, K. Patil, C. Mohan Shankarl, and A. Sripada (2008). Dis. Aquat. Organ. 79, 157.

    PubMed  Google Scholar 

  80. 80.

    W. Jaroenram, K. Wansika, and T. M. Flegel (2009). Mol. Cellular Probes 23, 65.

    CAS  Google Scholar 

  81. 81.

    J. Robalino, C. Browdy, S. Prior, A. Metz, P. Parnell, P. Gross, and G. Warr (2004). J. Virol. 78, 10442.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    M. Westenberg, B. Heinhuis, D. Zuidema, and J. M. Vlak (2005). Virus Res. 114, 133.

    CAS  PubMed  Google Scholar 

  83. 83.

    J. Xu, F. Han, and X. Zhang (2007). Antiviral Res. 73, 126.

    CAS  PubMed  Google Scholar 

  84. 84.

    B. H. Liu, Y. C. Lin, C. S. Ho, C. C. Yang, Y. T. Chang, J. F. Chang, C. Y. Li, C. S. Cheng, J. Y. Huang, Y. F. Lee, M. H. Hsu, F. C. Lin, H. C. Wang, C. F. Lo, S. Y. Yang, and H. C. Wang (2015). PLoS ONE 10, e0138207.

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    W. Sithigorngul, S. Rukpratanporn, N. Pecharaburanin, S. Rengpipat, S. Longyant, P. Chaivisuthangkura, and P. Sithigorngul (2006). Dis. Aquat. Organ. 72, 101.

    CAS  PubMed  Google Scholar 

  86. 86.

    Y. Lei, H. Chen, H. Dai, Z. Zeng, Y. Lin, F. Zhou, and D. Pang (2008). Biosens. Bioelectron. 23, 1200.

    CAS  PubMed  Google Scholar 

  87. 87.

    C. Thiruppathiraja, S. Kumar, V. Murugan, P. Adaikkappan, K. Sankaran, and M. Alagar (2011). Aquaculture 318, 262.

    CAS  Google Scholar 

  88. 88.

    Y. Seetang-Nun, W. Jaroenram, S. Sriurairatana, R. Suebsing, and W. Kiatpathomchai (2013). Mol. Cell Probes. 27, 71.

    CAS  PubMed  Google Scholar 

  89. 89.

    P. K. Kulabhusan, J. M. Rajwade, V. Sugumar, G. Taju, A. S. Sahul Hameed, and K. M. Paknikar (2017). PLoS ONE 12, 1.

    Google Scholar 

  90. 90.

    N. Anusha, K. S. Shalini Devi, R. Sudhakaran, and S. K. Annamalai (2017). Sci. Rep. 7, 46169.

    Google Scholar 

  91. 91.

    K. Roy, H. Q. Mao, and K. W. Leong (1997). Proc. Controlled Release Soc. 24, 673.

    Google Scholar 

  92. 92.

    J. Panyam, W. Z. Zhou, S. Prabha, S. K. Sahoo, and V. Labhasetwar (2002). FASEB J. 16, 1217.

    CAS  PubMed  Google Scholar 

  93. 93.

    M. Hedley, J. Curley, and R. Urban (1998). Nat. Med. 4, 365.

    CAS  PubMed  Google Scholar 

  94. 94.

    S. Rajeshkumar, C. Venkatesan, M. Sarathi, V. Sarathbabu, J. Thomas, K. Anver Basha, and A. S. Sahul Hameed (2009). Fish Shellfish Immunol. 26, 429.

    CAS  PubMed  Google Scholar 

  95. 95.

    L. J. Peek, C. R. Middaugh, and C. Berkland (2008). Adv. Drug Deliv. Rev. 60, 915.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    S. Vimal, S. AbdulMajeed, G. Taju, K. S. N. Nambi, N. SundarRaj, N. Madan, M. A. Farook, T. Rajkumar, D. Gopinath, and A. S. SahulHameed (2013). Acta. Tropica. 128, 486.

    CAS  PubMed  Google Scholar 

  97. 97.

    K. A. Ross (2014). JBMR 102, 4161.

    Google Scholar 

  98. 98.

    M. G. Kim, J. Y. Park, Y. Shon, G. Kim, G. Shim, and Y. K. Oh (2014). Asian J. Pharm. Sci. 9, 227.

    Google Scholar 

  99. 99.

    Y. Phanse, S. Puttamreddy, D. Loy, K. Ross, J. V. Ramirez, B. Narasimhan, and L. Bartholomay Driving Biomaterial Innovation and the Race to Translation (Society for Biomaterials, Charlotte, 2015), p. 15.

    Google Scholar 

  100. 100.

    A. R. Ochoa-Meza, A. R. Alvarez-Sanchez, C. R. Romo-Quinonez, A. Barraza, F. J. Magallon-Barajas, A. Chavez-Sanchez, J. C. Garcia-Ramos, Y. Toledano-Magana, N. Bogdanchikova, A. Pestryakov, and C. H. Mejia-Ruiz (2019). Fish & Shellfish Immunol. 84, 1083–1089.

    CAS  Google Scholar 

  101. 101.

    B. Sun, H. Quan, and F. Zhu (2016). Fish & Shellfish Immunol. 54, 241.

    CAS  Google Scholar 

  102. 102.

    K. Juarez-Moreno, C. H. Mejia-Ruiz, F. Diaz, H. Reyna-Verdugo, A. D. Re, E. F. Vazquez-Felix, E. Sanchez-Castrejon, J. D. Mota-Morales, A. Pestryakov, and N. Bogdanchikova (2017). Chemosphere 169, 716.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Ministry of Earth Sciences-Earth Science and Technology Cell (MoES-ESTC), Government of India, for financial assistance (MoES/11-MRDFIESTC-MEB(SU)/2/2014 PC-III), V.V thanks the DST-SERB (PDF/2016/003525) for a post doctoral research followship. We thank the management of Sathyabama Institute of Science and Technology for its firm support to carry out research activities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Govindaraju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Govindaraju, K., Dilip Itroutwar, P., Veeramani, V. et al. Application of Nanotechnology in Diagnosis and Disease Management of White Spot Syndrome Virus (WSSV) in Aquaculture. J Clust Sci 31, 1163–1171 (2020). https://doi.org/10.1007/s10876-019-01724-3

Download citation

Keywords

  • Nanotechnology
  • White spot syndrome virus (WSSV)
  • Aquaculture
  • Diagnosis
  • Vaccine delivery