Skip to main content
Log in

Cladophora fascicularis Mediated Silver Nanoparticles: Assessment of Their Antibacterial Activity Against Aeromonas hydrophila

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study reports on the bioactive potential of silver nanoparticle synthesized from seaweed, Cladophora fascicularis aqueous extract. C. fascicularis assisted silver nanoparticles (Cf-AgNPs) was characterized by UV–visible spectroscopy, XRD, FT-IR, FESEM, TEM, and EDX analysis. The Cf-AgNPs exhibited a maximum absorption peak at 427 nm. The carboxyl (–C=O) and amine (N–H) groups of C. fascicularis extract is answerable for the synthesis of Cf-AgNPs. The microscopic analysis confirmed that the synthesized Cf-AgNPs are spherical in shape with an average size of 45 nm. The Cf-AgNPs exhibited a dose depended antibacterial activity against Aeromonas hydrophila. Noteworthy bacterial inhibition (19 mm) was observed at 150 µg/ml, whereas, the lowest activity (10 mm) was recorded at 25 µg/ml. Similarly, Cf-AgNPs significantly (P < 0.05) enhanced the protein leakage in A. hydrophila by increasing the membrane permeability. The considerable amount of ROS activity was noticed in the test bacterium A. hydrophila when treated with 150 µg/ml of Cf-AgNPs. The toxicity investigation results revealed that the synthesized Cf-AgNPs were not acutely toxic to Artemia nauplii even at a higher concentration (150 μg/ml). These results underline that Cf-AgNPs effectively inhibited the growth of A. hydrophila and showed the non-toxic effect with outstanding biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. FAO The State of World Fisheries and Aquaculture 2016 (SOFIA): contributing to food security and nutrition for all (Food and Agriculture Organization, Rome, 2016), p. 200.

    Google Scholar 

  2. FAO State of World Aquaculture (Food and Agriculture Organization of the United Nations, Rome, 2008), p. 176.

    Google Scholar 

  3. S. Jeremic, D. Jakic-Dimic, and L. Veljovic (2003). Acta. Veterinaria.53, 399–410.

    Article  Google Scholar 

  4. P. H. Klesius, J. J. Evans, and C. A. Shoemaker (2007). Fish Shellfish Immun.22, 443–450.

    Article  CAS  Google Scholar 

  5. D. V. Lightner (2011). J Invertebr. Pathol.106, 110–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. I. Zorrilla, M. Chabrillon, S. Arijo, P. Diaz-Rosales, and E. Martinez-Manzanares (2003). Aquaculture.218, 11–20.

    Article  Google Scholar 

  7. J. M. Janda and S. L. Abbott (2010). Clin. Microbiol. Rev.23, 35–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. L. Angka, T. J. Lam, and Y. M. Sin (1995). Aquaculture.130, 103–112.

    Article  Google Scholar 

  9. H. Neethu, K.T. Tincy, and A.N. Jayakumaran (2013). ISRN Nanotechnol. https://doi.org/10.1155/2013/792105.

    Article  Google Scholar 

  10. P. Raji, Antony V. Samrot, D. Keerthanam, and S. Karishma (2019). J. Clust. Sci.30, 881.

    Article  CAS  Google Scholar 

  11. A. Maniraj, M. Kannan, K. Rajarathinam, S. Vivekanandhan, and S. Muthuramkumar (2019).J.Clust. Sci.(in press).

  12. K. H. Cho, J. E. Park, T. Osaka, and S. G. Park (2005). Electrochimica Acta.51, 956–960.

    Article  CAS  Google Scholar 

  13. E. M. Petrus, S. Tinakumari, L. C. Chai, A. Ubong, R. Tunung, N. Elexson, L. F. Chai, and R. Son (2011). Int. Food. Res J.18, 55–66.

    CAS  Google Scholar 

  14. W. R. Li, X. B. Xie, Q. S. Shi, H. Y. Zeng, Y. S. Ou-Yang, and Y. B. Chen (2010). Appl. Microbiol. Biotechnol.85, 1115–1122.

    Article  CAS  PubMed  Google Scholar 

  15. J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho (2007). J. Nanomed.3, 95–101.

    Article  CAS  Google Scholar 

  16. B. Sarkar, A. Mahanty, S. P. Netam, S. Mishra, N. Pradhan, and M. Samanta (2012). Int. J. Nanomater. Biostruct.2, 70–74.

    Google Scholar 

  17. P. Kalimuthu and S. John (2008). J. Electroanal. Chem.617, 164–170.

    Article  CAS  Google Scholar 

  18. K. Kanagamani, P. Muthukrishnan, M. Ilayaraja, J. Kumar, K. Shankar, and A. Kathiresan (2017). J. Photochem. Photobiol A.346, 470–478.

    Article  CAS  Google Scholar 

  19. K. Kanagamani, P. Muthukrishnan, M. Ilayaraja, K. Shankar, and A. Kathiresan (2018). J. Inorganic Organometal. Polymers Mater.28, (3), 702–710.

    Article  CAS  Google Scholar 

  20. K. Kanagamani, P. Muthukrishnan, K. Shankar, A. Kathiresan, H. Barabadi, M. Saravanan (2019). J. Clust. Sci. https://doi.org/10.1007/s10876-019-01583-y.

    Article  Google Scholar 

  21. S. Palanisamy, R. Anjali, M. Vinosha, M. Reka, S. Selvakumar, P. Boomi, K. Anand, N.M. Prabhu, S.S.N. Somasundaram, S. You (2019).Process Biochem. (in press).

  22. A. Ravichandran, P. Subramanian, V. Manoharan, T. Muthu, R. Periyannan, M. Thangapandi, K. Ponnuchamy, B. Pandi, and P. N. Marimuthu (2018). J. Photochem. Photobiol B.185, 117–125.

    Article  CAS  PubMed  Google Scholar 

  23. S. Palanisamy, P. Rajasekar, G. Vijayaprasath, G. Ravi, R. Manikandan, and N. M. Prabhu (2017). Mater. Lett.189, 196–200.

    Article  CAS  Google Scholar 

  24. M. Hjelm, O. Bergh, A. Riaza, J. Nielsen, J. Melchiorsen, S. Jensen, H. Duncan, P. Ahrens, H. Birkbeck, and L. Gram (2004). Syst. Appl. Microbiol.27, 360–371.

    Article  PubMed  Google Scholar 

  25. K. Chauhan, R. Sharma, R. Dharela, G. S. Chauhan, and R. K. Singhal (2016). RSC Adv.79, 2016.

    Google Scholar 

  26. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951). J. Biol. Chem.193, 265–275.

    CAS  PubMed  Google Scholar 

  27. I. S. Kye, Y. S. Jeon, J. K. No, and A. Kim (1999). J. Korean Gerontol. Nurs.9, 10–17.

    Google Scholar 

  28. C. Arulvasu, S. M. Jennifer, D. Prabhu, and D. Chandhirasekar (2014). Sci World J2014, 256919.

    Article  CAS  Google Scholar 

  29. H. Jiang, K. S. Moon, Z. Zhang, S. Pothukuchi, and C. Wong (2006). J Nanopart.8, 117–124.

    Article  CAS  Google Scholar 

  30. S. Muthukrishnan, S. Bhakya, T. S. Kumar, and M. Rao (2015). Ind. Crops Prod.63, 119–124.

    Article  CAS  Google Scholar 

  31. N. Kanipandian, S. Kannan, R. Ramesh, P. Subramanian, and R. Thirumurugan (2014). Mater. Res. Bull.49, 494–502.

    Article  CAS  Google Scholar 

  32. M. Ahmad, F. Mohammed, F. Maqbool, A. Azamand, and S. Iqbal (2003). Sarhad J. Agric.19, 347–351.

    Google Scholar 

  33. S. Link and M. A. El-Sayed (1999). J. Phys. Chem. B.103, 8410–8426.

    Article  CAS  Google Scholar 

  34. K. Chauhan, R. Sharma, R. Dharela, G. S. Chauhan, and R. K. Singhal (2016). RSC Adv.6, 75453–75464.

    Article  CAS  Google Scholar 

  35. V. Sridhara, K. Pratima, G. Krishnamurthy, and B. Sreekanth (2013). Asian J Pharm Clin Res.6, 53–57.

    CAS  Google Scholar 

  36. R. Swarup and D. T. Kumar (2014). Nanosci. Nanotechnol. Lett.6, 181.

    Article  CAS  Google Scholar 

  37. A. Ghadimi, R. Saidur and H.S.C Metselaar (2011). Int J Heat Mass Transf. 54, 4051-4068.

  38. R. Augustine, N. Kalarikkal, and S. Thomas (2014). Appl. Nanosci.4, 809–818.

    Article  CAS  Google Scholar 

  39. S. Patil, J. Fernandes, R. Tangasali, and I. Furtado (2014). J Clust Sci.25, 423–433.

    Article  CAS  Google Scholar 

  40. R. Bhat, S. Ganachari, and R. Deshpande (2013). J Clust Sci.24, 107.

    Article  CAS  Google Scholar 

  41. H. Alishah, S. P. Seyedi, S. Y. Ebrahimipour, and S. Esmaeili-Mahani (2016). J. Clust. Sci.27, 421–429.

    Article  CAS  Google Scholar 

  42. S. K. Das, M. M. R. Khan, A. K. Guha, A. R. Das, and A. B. Mandal (2012). Bioresour Technol.124, 495–499.

    Article  CAS  PubMed  Google Scholar 

  43. M. Moyo, M. Gomba, and T. Nharingo (2015). Int. J. Ind. Chem.6, 329–338.

    Article  CAS  Google Scholar 

  44. K. Kathiresan, S. Manivannan, M. A. Nabeal, and B. Dhivya (2009). Coll. Surf. B.71, 133–137.

    Article  CAS  Google Scholar 

  45. A. Nabikhan, K. Kandasamy, A. Raj, and N. M. Alikunh (2010). Coll. Surf. B Biointerfaces.79, 488–493.

    Article  CAS  Google Scholar 

  46. A. Sankaranarayanan, G. Munivel, G. Karunakaran, S. Kadaikunnan, N. S. Alharbi, J. M. Khaled, and D. Kuznetsov (2017). J. Clust. Sci.28, 995–1008.

    Article  CAS  Google Scholar 

  47. A. Shahzad, H. Saeed, M. Iqtedar, S. Z. Hussain, A. Kaleem, R. Abdullah, S. Sharif, S. Naz, F. Saleem, A. Aihetasham, and A. Chaudhary (2019). J. Nanomater2019, 5168698.

    Article  CAS  Google Scholar 

  48. S. Pal, Y. K. Tak, and J. M. Song (2007). Appl. Environ. Microbiol. Mar.73, 1712–1720.

    Article  CAS  Google Scholar 

  49. S. Gurunathana (2019). Arab. J. Chem.12, 168–180.

    Article  CAS  Google Scholar 

  50. S. H. Kim, H. S. Lee, D. S. Ruy, S. J. Choi, and D. S. Lee (2011). Korean J. Microbiol. Biotechnol.39, 77–85.

    CAS  Google Scholar 

  51. D. K. Tiwari, J. Behari, and P. Sen (2008). Currt. Sci.95, 647–655.

    CAS  Google Scholar 

  52. A. Nel, T. Xia, L. Madler, and N. Li (2006). Science.311, 622–627.

    Article  CAS  PubMed  Google Scholar 

  53. H. L. Su, C. C. Chou, D. J. Hung, S. H. Lin, I. C. Pao, J. H. Lin, F. L. Huang, R. X. Dong, and J. J. Lin (2009). Biomaterials.30, 5979–5987.

    Article  CAS  PubMed  Google Scholar 

  54. Y. Matsumura, K. Yoshikata, S. Kunisaki, and T. Tsuchido (2003). Appl. Environ. Microbiol.69, 4278–4281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S. R. K. Pandian, V. Deepak, K. Kalishwaralal, P. Viswanathan, and S. Gurunathan (2010). Braz. J. Microbiol.41, 805–809.

    Article  CAS  Google Scholar 

  56. I. Maliszewska and Z. Sadowski (2009). J. Phys Conf Ser.1, 146–151.

    Google Scholar 

  57. C. Dipankar and S. Murugan (2012). Colloids Surf B.98, 112–119.

    Article  CAS  Google Scholar 

  58. X. P. Nunes, G. L. A. Maia, J. R. G. S. Almeida, F. O. Pereira, and E. O. Lima (2006). Rev Bras Farmacogn.16, 642–644.

    Article  CAS  Google Scholar 

  59. V. Kokkali, I. Katramados, and J. D. Newman (2011). Biosensors.1, 45–49.

    Article  CAS  Google Scholar 

  60. M. Ates, J. Daniels, Z. Arslan, and I. O. Farah (2013). Environ. Monit. Assess.185, 3339–3348.

    Article  CAS  PubMed  Google Scholar 

  61. M. Latha, M. Priyanka, P. Rajasekar, R. Manikandan, and N. M. Prabhu (2016). Microb. Pathog.93, 88–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are thankful to RUSA scheme Phase 2.0 Grant [F-24-51/2014–U, Policy (TNMulti-Gen), Dept of Edn, Govt. of India. Dt. 09.10.2018] for their financial support. The author would like to thank the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A1A03023584) for the support to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayanasamy Marimuthu Prabhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekar, P., Palanisamy, S., Anjali, R. et al. Cladophora fascicularis Mediated Silver Nanoparticles: Assessment of Their Antibacterial Activity Against Aeromonas hydrophila. J Clust Sci 31, 673–683 (2020). https://doi.org/10.1007/s10876-019-01674-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01674-w

Keywords

Navigation