Cullen corylifolium (L.) Medik. Seed Extract, an Excellent System For Fabrication of Silver Nanoparticles and Their Multipotency Validation Against Different Mosquito Vectors and Human Cervical Cancer Cell Line


Development of therapeutic drugs for mosquito control and cancer is the need of the hour. This study highlights the fabrication of silver nanoparticles by incubating 45 ml of AgNO3 (0.5 mM) solution with 5 ml of Cullen corylifolium aqueous green seed extract at 60 ± 2 °C, 9 pH for 90 min. Ultraviolet–visible spectroscopy confirmed the synthesis of AgNPs by observing the absorption peak at 422 nm. Crystallographic nature of AgNPs was proved by XRD spectrum. FE-SEM images exhibited that most of AgNPs were spherical in shape with 20–60 nm average size. FT-IR spectrum revealed the existence of secondary metabolites that were involved in the reduction, stabilization and capping of AgNPs. The synthesized AgNPs exhibited the strong bioefficacy against the 3rd instar larvae of Anopheles stephensi (LC50, 6.03; LC90, 10.86 ppm), Aedes aegypti (LC50, 8.29; LC90, 13.75 ppm) and Culex quinquefasciatus (LC50, 16.55; LC90, 36.81 ppm) after 72 h of exposure. The AgNPs also exhibited strong anti-cancer activity having IC50 value 1.129 μg/ml after 24 h. These were proved to be non-toxic against non-target organism and normal cell line. These results suggest that synthesized AgNPs have strong larvicidal and anti-cancer potential and thus can be employed in cancer therapy, targeted drug delivery and drug designing.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    V. Gupta, M. Mittal, and V. Sharma (2014).Oman. Med. J.29, (2), 142.

    Google Scholar 

  2. 2.

    F. W. Overbosch, J. Schinkel, I. G. Stolte, M. Prins, and G. J. Sonder (2018). PLOS One13, (2), e0192193.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    D. Kumar, G. Kumar, and V. Agrawal (2018). Parasitol. Res.117, (2), 377–389.

    PubMed  Google Scholar 

  4. 4.

    World Health Organization (2017). World malaria report. (accessed on June 30, 2018) Available at:

  5. 5.

    G. Benelli, A. L. Iacono, A. Canale, and H. Mehlhorn (2016). Parasitol. Res.115, (6), 2131–2137.

    PubMed  Google Scholar 

  6. 6.

    S. Lehrer (2010). Med. Hypotheses74, 167–168.

    PubMed  Google Scholar 

  7. 7.

    D. Kumar, G. Kumar, R. Das, and V. Agrawal (2018). Process Saf. Environ. Prot.116, 137–148.

    CAS  Google Scholar 

  8. 8.

    A. Rawani (2017). Int. J. Nanotechnol. Appl.11, 17–28.

    Google Scholar 

  9. 9.

    C. Tiloke, A. Phulukdaree, K. Anand, R. M. Gengan, and A. A. Chuturgoon (2016). J. Cell Biochem.117, 2302–2314.

    CAS  PubMed  Google Scholar 

  10. 10.

    G. Lakshmanan, A. Sathiyaseelan, P. T. Kalaichelvan, and K. Murugesan (2018). Karbala Int. J. Mod. Sci.4, (1), 61–68.

    Google Scholar 

  11. 11.

    B. Chopra, A. K. Dhingra, and K. L. Dhar (2013). Psoralea corylifolia L. (Buguchi)-folklore to modern evidence. Fitoterapia90, 44–56.

    CAS  PubMed  Google Scholar 

  12. 12.

    F. Alam, G. N. Khan, and M. H. H. B. Asad (2018). Phytother. Res.32, 597–615.

    PubMed  Google Scholar 

  13. 13.

    F. Dong, E. Valasami-Jones, and J. U. Kreft (2016). J. Nanopart. Res.18, 259.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    WHO, Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides (WHO/VBC/81.807, Geneva, 1988).

  15. 15.

    C. D. Patil, S. V. Patil, H. P. Borase, B. K. Salunke, and R. B. Salunkhe (2012). Parasitol. Res.110, (5), 1815–1822.

    PubMed  Google Scholar 

  16. 16.

    Y. R. Saadat, N. Saeidi, S. Z. Vahed, A. Barzegari, and J. Barar (2015). Bioimpacts5, (1), 25.

    CAS  Google Scholar 

  17. 17.

    D. J. Finney Probit Analysis, 3d ed (Cambridge University Press, London, 1971), pp. 68–78.

    Google Scholar 

  18. 18.

    M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, and C. Small (2007). Appl. Phys. B Lasers O86, (3), 455–460.

    CAS  Google Scholar 

  19. 19.

    K. Anand, C. Tiloke, P. Naidoo, and A. A. Chuturgoon (2017). J. Photochem. Photobiol. B173, 626–639.

    CAS  PubMed  Google Scholar 

  20. 20.

    Yu A Mirgood and V. G. Borodina (2013). Inorg. Mat.49, (10), 980–983.

    Google Scholar 

  21. 21.

    L. B. Anigol, J. S. Charantimath, and P. M. Gurubasavaraj (2017). Org. Med. Chem.3, (5), 555–622.

    Google Scholar 

  22. 22.

    H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra (2009). Colloids Surf. A Physicochem. Eng. Aspects339, 134–139.

    CAS  Google Scholar 

  23. 23.

    A. Verma and M. S. Mehata (2016). J. Radiat. Res. Appl. Sci.9, (1), 109–115.

    CAS  Google Scholar 

  24. 24.

    H. Veisi, S. Azizi, and P. Mohammadi (2018). J. Clean. Prod.170, 1536–1543.

    CAS  Google Scholar 

  25. 25.

    R. Sanghi and P. Verma (2009). Biores. Technol.100, (1), 501–504.

    CAS  Google Scholar 

  26. 26.

    D. Andreescu, C. Eastman, K. Balantrapu, and D. V. Goia (2007). J. Mater. Res.22, (9), 2488–2496.

    CAS  Google Scholar 

  27. 27.

    M. Sathishkumar, K. Sneha, W. S. Won, C. W. Cho, S. Kim, and Y. S. Yun (2009). Colloids Surf. B Biointerfaces73, (2), 332–338.

    CAS  PubMed  Google Scholar 

  28. 28.

    S. M. Roopan, G. Madhumitha, A. A. Rahuman, C. Kamaraj, A. Bharathi, and T. V. Surendra (2013). Ind. Crops Prod.43, 631–635.

    CAS  Google Scholar 

  29. 29.

    M. Rashidipour and R. Heydari (2014). J. Nanostruct. Chem.4, 112.

    Google Scholar 

  30. 30.

    H. M. Ibrahim (2015). J. Radiat. Res. Appl. Sci.8, (3), 265–275.

    Google Scholar 

  31. 31.

    P. Premasudha, M. Venkataramana, M. Abirami, P. Vanathi, K. Krishna, and R. Rajendran (2015). Bull. Mater. Sci.38, (4), 965–973.

    CAS  Google Scholar 

  32. 32.

    M. E. T. Yazdi, V. Khara, H. R. Sadeghnia, S. E. Bahabadi, and M. Darroudi (2018). Res. Chem. Intermed.44, (2), 1325–1334.

    Google Scholar 

  33. 33.

    S. Chinnappan, S. Kandasamy, S. Arumugam, K. K. Seralathan, S. Thangaswamy, and G. Muthusamy (2018). Environ. Sci. Pollut. Res. Int.25, (1), 963–969.

    CAS  PubMed  Google Scholar 

  34. 34.

    M. Dubey, S. Bhadauria, and B. S. Kushwah (2009). J. Nanomater. Biostruct.4, 537–543.

    Google Scholar 

  35. 35.

    K. Jyoti, M. Baunthiyal, and A. Singh (2016). J. Radiat. Res. Appl. Sci.9, (3), 217–227.

    CAS  Google Scholar 

  36. 36.

    D. Y. Kim, R. G. Saratale, S. Shinde, A. Syed, F. Ameen, and G. Ghodake (2018). J. Clean. Prod.179, 2910–2918.

    Google Scholar 

  37. 37.

    N. Chouhan, R. Ameta, and R. K. Meena (2017). J. Mol. Liq.230, 74–84.

    CAS  Google Scholar 

  38. 38.

    J. R. Koduru, S. K. Kailasa, J. R. Bhamore, K. H. Kim, T. Dutta, and K. Vellingiri (2018). Adv. Coll. Interface Sc.256, 326–339.

    CAS  Google Scholar 

  39. 39.

    G. Benelli and M. Govindarajan (2017). J. Clust. Sci.28, (1), 287–308.

    CAS  Google Scholar 

  40. 40.

    F. S. AlQahtani, M. M. AlShebly, M. Govindarajan, S. Senthilmurugan, P. Vijayan, and G. Benelli (2017). J. Asia Pac. Entomol.20, (1), 157–164.

    Google Scholar 

  41. 41.

    K. Murugan, G. Benelli, S. Ayyappan, D. Dinesh, C. Panneerselvam, M. Nicoletti, J. S. Hwang, M. P. Kumar, J. Subramaniam, and U. Suresh (2015). Parasitol. Res.114, (6), 22433.

    Google Scholar 

  42. 42.

    J. Singh, G. Kaur, P. Kaur, R. Bajaj, and M. Rawat (2016). World. J. Pharm. Pharm. Sci.7, 730–762.

    Google Scholar 

  43. 43.

    P. M. Kumar, K. Murugan, P. Madhiyazhagan, K. Kovendan, D. Amerasan, B. Chandramohan, D. Dinesh, U. Suresh, M. Nicoletti, M. S. Alsalhi, and S. Devanesan (2016). Parasitol. Res.115, (2), 751–759.

    PubMed  Google Scholar 

  44. 44.

    P. C. Nagajyothi, M. Pandurangan, D. H. Kim, T. V. M. Sreekanth, and J. Shim (2017). J. Clus. Sci.28, (1), 245–257.

    CAS  Google Scholar 

  45. 45.

    T. V. M. Sreekanth, M. Pandurangan, D. H. Kim, and Y. R. Lee (2016). J. Clus. Sci.27, (2), 671–681.

    CAS  Google Scholar 

  46. 46.

    M. Pandurangan, G. Enkhtaivan, J. A. Young, H. J. Hoon, H. Lee, S. Lee, and D. H. Kim (2016). Biol. Trace Elem. Res.171, (2), 293–300.

    CAS  PubMed  Google Scholar 

  47. 47.

    H. Kapoor, N. Yadav, M. Chopra, S. C. Mahapatra, and V. Agrawal (2017). Curr. Cancer Drug. Targ.17, (1), 74–88.

    CAS  Google Scholar 

  48. 48.

    M. Pandurangan, G. Enkhtaivan, B. Venkitasamy, B. Mistry, R. Noorzai, B. Y. Jin, and D. H. Kim (2016). Biol. Trace Element. Res.170, (2), 309–319.

    CAS  Google Scholar 

Download references


Authors are grateful to the Science and Engineering Research Board (SERB), Government of India for the sanction of major Research Project (Grant No. EMR/2016/001673) to VA, and to University of Delhi for providing DST PURSE Grant. Himanshu Saini is grateful to DU-UGC for awarding UGC non-NET fellowship.

Author information



Corresponding author

Correspondence to Veena Agrawal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saini, H., Yadav, R., Kumar, D. et al. Cullen corylifolium (L.) Medik. Seed Extract, an Excellent System For Fabrication of Silver Nanoparticles and Their Multipotency Validation Against Different Mosquito Vectors and Human Cervical Cancer Cell Line. J Clust Sci 31, 161–175 (2020).

Download citation


  • Seed extract
  • AgNPs
  • Cullen corylifolium
  • Biosynthesis
  • Larvicidal
  • Anti-cancer