A Green Systematic Approach of Carbon/CuO Nano Composites Using Aristolochia bracteolate by Response Surface Methodology


The objective of this work is eco-friendly synthesis of Carbon/Copper oxide nano composites (C/CuO nano composites) from the aqueous extract of Aristolochia bracteolata (ABLPAE) via response surface methodology (RSM). Here we optimized various parameters to find out the absorption maximum value using RSM technique. Then the synthesized C/CuO nano composites were processed using different analytical tools. The crystanality of C/CuO was investigated using XRD analysis which exhibited crystalline size of 43 ± 2 nm. Additionally, synthesized C/CuO nano composites were used to study larvicidal activity using MANOVA; LSD-DMRT test. We found that results showed LC50 value at 26.42 ppm and 86.13 ppm for LC90. Ovicidal activity by anti-feedant method resulted in a dose dependent manner with a high mortality rate at higher concentrations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, J. M. Drake, J. S. Brownstein, A. G. Hoen, O. Sankoh, M. F. Myers, D. B. George, T. Jaenisch, G. R. W. Wint, C. P. Simmons, T. W. Scott, J. J. Farrar, and S. I. Hay (2013). Nature 496, 504–507.

    CAS  Article  Google Scholar 

  2. 2.

    P. Thiyagarajan, P. Kumar, K. Kovendan, and K. Murugan (2014). Acta Biologica Indica 3, 527–535.

    Google Scholar 

  3. 3.

    G. Benelli, A. Caselli, and A. Canale (2017). JKSUS 29, 424–435.

    Google Scholar 

  4. 4.

    S. B. Santhosh, C. Ragavendran, and D. Natarajan (2015). J. Photochem. Photobiol. B: Biol. 153, 184–190.

    CAS  Article  Google Scholar 

  5. 5.

    D. S. Lee, S. Qian, C. Y. Tay, and D. T. Leong (2016). Chem. Soc. Rev. 45, 4199–4225.

    CAS  Article  Google Scholar 

  6. 6.

    J. E. N. Dolatabadi and M. Guardia (2014). Anal. Methods 6, 3891–3900.

    Article  Google Scholar 

  7. 7.

    I. Mahapatra, J. Clark, P. J. Dobson, R. Owen, and J. R. Lead (2013). Environ. Sci.: Processes Impacts 15, 123–144.

    CAS  Google Scholar 

  8. 8.

    S. A. Khan, S. Shahid, W. Bashir, S. Kanwal, and A. Iqbal (2017). Trop. J. Pharm. Res. 16, 2331–2339.

    CAS  Article  Google Scholar 

  9. 9.

    S. A. Khan, S. Shahid, S. Jabin, S. Zaman, and M. N. Sarwar (2018). Dig. J. Nanomater. Biostruct. 13, 285–297.

    Google Scholar 

  10. 10.

    R. Ishwarya, B. Vaseeharana, R. Anuradhaa, R. Rekhaa, M. Govindarajan, N. S. Alharbi, S. Kadaikunnanc, J. M. Khaledc, and G. Benelli (2017). J. Photo Photo B: Biol. 174, 133–143.

    CAS  Article  Google Scholar 

  11. 11.

    C. Panneerselvam, K. Murugan, M. Roni, A. T. Aziz, U. Suresh, R. Rajaganesh, P. Madhiyazhagan, J. Subramaniam, D. Dinesh, M. Nicoletti, A. Higuchi, A. A. Alarfaj, M. A. Munusamy, S. Kumar, N. Desneux, and G. Benelli (2016). Parasitol. Res. 115, 997–1013.

    Article  Google Scholar 

  12. 12.

    J. Jeevanandam, Y. S. Chan, and M. K. Danquah (2017). New J. Chem. 41, 2800–2814.

    CAS  Article  Google Scholar 

  13. 13.

    H. Duan, D. Wang, and Y. Li (2015). Chem. Soc. Rev. 44, 5778–5792.

    CAS  Article  Google Scholar 

  14. 14.

    G. K. Deokar and A. G. Ingale (2016). RSC Adv. 6, 74620–74629.

    CAS  Article  Google Scholar 

  15. 15.

    G. Benelli (2016). Parasitol. Res. 115, 23–34.

    Article  Google Scholar 

  16. 16.

    S. A. Khan, S. Kanwal, K. Rizwan, and S. Shahid (2018). Microb. Pathog. 125, 366–384.

    CAS  Article  Google Scholar 

  17. 17.

    F. Ijaz, S. Sammia, S. A. Khan, W. Ahmad, and S. Zaman (2017). Trop. J. Pharm. Res. 16, 743–753.

    CAS  Article  Google Scholar 

  18. 18.

    S. A. Khan, F. Noreen, S. Kanwal, A. Iqbal, and G. Hussain (2017). Mater. Sci. Eng. C 82, 46–59.

    Article  Google Scholar 

  19. 19.

    A. S. Lanje, S. J. Sharma, R. B. Pode, and R. S. Ningthoujam (2010). Adv. Appl. Sci. Res. 1, 36–40.

    CAS  Google Scholar 

  20. 20.

    B. Kalpana, S. Kanimozhi, and P. Suganyadevi (2011). J. Pharm. Res. 4, 1509–1514.

    Google Scholar 

  21. 21.

    D. Kavitha and R. Nirmaladevi (2009). Afr. J. Biotech. 8, 4242–4244.

    Google Scholar 

  22. 22.

    H. R. Chitme, M. Malipatil, V. M. Chandrashekhar, and P. M. Prashant (2010). Ind. J. Exp. Biol. 48, 46–52.

    CAS  Google Scholar 

  23. 23.

    H. R. Chitme and N. P. Patel (2009). Open Nat. Prod. J. 2, 6–15.

    Article  Google Scholar 

  24. 24.

    V. Anil Kumar, K. Ammani, R. Jobina, P. Parasuraman, and B. Siddhardha (2016). IET Nanobiotechnol. 10, 1–7.

    Article  Google Scholar 

  25. 25.

    R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K. S. Shivashangari, and V. Ravikumar (2014). Spectrochim. Acta Mol. Biomol. Spectrosci. 121, 746–750.

    CAS  Article  Google Scholar 

  26. 26.

    J. K. Sharma, M. S. Akhtar, S. Ameen, P. Srivastava, and G. Singh (2015). J. Alloys Compds. 632, 321–325.

    CAS  Article  Google Scholar 

  27. 27.

    M. M. Rahman, A. J. S. Ahammad, J. H. Jin, S. J. Ahn, and J. J. Lee (2010). Sensors 10, 4855–4886.

    CAS  Article  Google Scholar 

  28. 28.

    S. Suman, N. Kumar, M. Kumar, A. Jyoti, A. Ajay, and M. Boris (2017). Chem. Eng. J. 313, 283–292.

    Article  Google Scholar 

  29. 29.

    R. Sankar, P. Manikandan, V. Malarvizhi, T. Fathima, K. S. Shivashangari, and V. Ravikumar (2014). Spectrochim. Acta A Mol. Biomol. Spect. 121, 746–750.

    CAS  Article  Google Scholar 

  30. 30.

    I. Y. Erdogan and O. Gullu (2010). J. Alloy. Compd. 492, 378–383.

    CAS  Article  Google Scholar 

  31. 31.

    S. Dashamiri, M. Ghaedi, K. Dashtian, M. R. Rahimi, A. Goudarzi, and R. Jannesar (2016). Ultra Sonochem. 31, 546–557.

    CAS  Article  Google Scholar 

  32. 32.

    M. Nasrollahzadeh, S. M. Sajadi, and M. Maham (2015). RSC Adv. 5, 40628–40635.

    CAS  Article  Google Scholar 

  33. 33.

    S. A. Khan, S. Shahid, M. R. Sajid, F. Noreen, and S. Kanwal (2017). Int. J. Adv. Res. 5, 925–946.

    CAS  Article  Google Scholar 

  34. 34.

    N. Adam, A. Vakurov, D. Knapen, and R. Blust (2015). J. Hazard. Mater. 283, 416–422.

    CAS  Article  Google Scholar 

  35. 35.

    G. Elango, S. M. Roopan, N. A. Al-Dhabi, M. V. Arsu, K. I. Damodharan, and K. Elumalai (2016). Artif. Cells Nanomed. Biotech. 45, 1581–1587.

    Article  Google Scholar 

  36. 36.

    C. Sarkar and S. K. Dolui (2015). RSC Adv. 5, 60763–60769.

    CAS  Article  Google Scholar 

  37. 37.

    F. Wang, D. Cheng, T. Cheng, J. Zong, Y. Long, M. Zhao, S. Yang, and X. Song (2019). Chem. Phys. 518, 1–7.

    CAS  Article  Google Scholar 

  38. 38.

    J. C. Park, J. Kim, H. Kwon, and H. Song (2009). Adv. Mater. 21, 803–807.

    CAS  Article  Google Scholar 

  39. 39.

    M. Verma, V. K. Gupta, V. Dave, R. Chandra, and G. K. Prasad (2015). J. Colloid Int. Sci. 438, 102–109.

    CAS  Article  Google Scholar 

  40. 40.

    C. Yang, X. Su, J. Wang, X. Cao, S. Wang, and L. Zhang (2013). Actuators A 185, 159–165.

    CAS  Article  Google Scholar 

  41. 41.

    M. L. Ruelas, P. A. Madrid, O. E. Pereyra, W. A. Flores, P. P. Ruiz, C. O. Gutierrez, and C. O. Yoshida (2017). J Alloys Compd. 643, S46–S50.

    Article  Google Scholar 

  42. 42.

    T. Shanmugasundaram and R. Balagurunathan (2013). J. Parasit Dis. 39, 677–684.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Selvaraj Mohana Roopan.

Ethics declarations

Conflict of interest

Authors stated that there is no conflict of interest regarding this publication in your reputed journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2235 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roopan, S.M., Sharma, H., Kumar, G. et al. A Green Systematic Approach of Carbon/CuO Nano Composites Using Aristolochia bracteolate by Response Surface Methodology. J Clust Sci 30, 1177–1183 (2019). https://doi.org/10.1007/s10876-019-01613-9

Download citation


  • Aristolochia bracteolata
  • C/CuO nano composites
  • RSM technique
  • Larvicidal
  • Ovicidal activity