Synthesis and Characterization of Cefditoren Capped Silver Nanoparticles and Their Antimicrobial and Catalytic Degradation of Ibuprofen


While manufacturing silver nanoparticles (Ag-NPs) by green chemical rout, here we presented a naive, bottom-up and green rout for the production of Ag-NPs by successfully employed for catalytic degradation of ibuprofen drug. The Cefditoren derived silver nanoparticles were optimized by Ultra Violet–Visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and high-resolution transmission electron microscope analysis. This work has shown that a comprehensive degradation of ibuprofen of about ~ 99.9% was attained in little reaction time (60 s) by nimble Cef-Ag-NPs. The precision was achieved in percent degradation of ibuprofen by altering and adjusting the reaction period, quantity, and concentration of catalyst. The calculated rate constant (K) value for ibuprofen catalytic degradation was attained in 8 × 10−2 S−1 by plotting in concentration (C) versus time (s). The bactericidal potency of fabricated Cef-Ag-NPs was also assessed for the preferred Gram-positive Staphylococcus aureus (S. aureus) and Streptococcus pyogenes (S. pyogens) and Gram-negative Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) bacterial species. The outcomes were inveterate that common antibiotic in amalgamation with silver nanoparticles had strong and drastic antibacterial effects as compared to individually treated antibiotic and silver ions. On behalf of these consequences, it was realized that concerning Cef-Ag-NPs would serve as fast, economic, and less conventional candidates for other harmful and antibiotic-resistant pathogens.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7



Cefditoren derived silver nanoparticles

UV Vis:

Ultra Violet–Visible spectroscopy


X-ray diffraction


Fourier transform infrared spectroscopy


High-resolution transmission electron microscopy

S. aureus :

Staphylococcus aureus

S. pyogens :

Streptococcus pyogenes

E. coli :

Escherichia coli

S. typhimurium :

Salmonella typhimurium


Nonsteroidal anti-inflammatory drugs








  1. 1.

    A. Khan, D. F. Shams, W. Khan, A. Ijaz, M. Qasim, M. Saad, A. Hafeez, S. A. Baig, and N. Ahmed (2018). Environ. Monit. Assess. 190, 324.

    Article  Google Scholar 

  2. 2.

    E. Larsson, S. Al-Hamimi, and J. Å. Jönsson (2014). Sci. Total Environ. 485, 300.

    Article  Google Scholar 

  3. 3.

    V. Yargeau, Q. A. Edwards, S. M. Kulikov, C. D. Metcalfe, T. Sultana, and L. D. Garner-O’Neale (2018). Bull. Environ. Contam. Toxicol. 101, 1.

    Article  Google Scholar 

  4. 4.

    D. J. Kanabar (2017). Inflammopharmacology 25, 1.

    CAS  Article  Google Scholar 

  5. 5.

    A. I. López-Lorente, R. A. Picca, J. Izquierdo, C. Kranz, B. Mizaikoff, C. Di Franco, S. Cárdenas, N. Cioffi, G. Palazzo, and A. Valentini (2018). Microchim. Acta 185, 153.

    Article  Google Scholar 

  6. 6.

    M. A. Ansari and M. A. Alzohairy (2018). Evidence-Based Complement. Altern. Med. 2018, 1.

    Article  Google Scholar 

  7. 7.

    M. Barbagallo and P. Sacerdote (2019). Minerva Pediatr. 71, 82.

    PubMed  Google Scholar 

  8. 8.

    Q. Sun, M. Lv, A. Hu, X. Yang, and C. P. Yu (2014). J. Hazard. Mater. 277, 69.

    CAS  Article  Google Scholar 

  9. 9.

    C. L. Amorim, A. S. Maia, R. B. R. Mesquita, A. O. S. S. Rangel, M. C. M. van Loosdrecht, M. E. Tiritan, and P. M. L. Castro (2014). Water Res. 50, 101.

    CAS  Article  Google Scholar 

  10. 10.

    Y. Zhang, J. Geng, H. Ma, H. Ren, K. Xu, and L. Ding (2016). Sci. Total Environ. 571, 479.

    CAS  Article  Google Scholar 

  11. 11.

    R. Liao, M. Li, W. Li, X. Lin, D. Liu, and L. Wang (2018). J. Mater. Sci. 53, 5929.

    CAS  Article  Google Scholar 

  12. 12.

    W. Zhou, X. Meng, L. Rajic, Y. Xue, S. Chen, Y. Ding, K. Kou, Y. Wang, J. Gao, Y. Qin, and A. N. Alshawabkeh (2018). Electrochem. Commun. 96, 37.

    CAS  Article  Google Scholar 

  13. 13.

    Y. Xiang, J. Fang, and C. Shang (2016). Water Res. 90, 301.

    CAS  Article  Google Scholar 

  14. 14.

    A. Shetty and G. Gupta, in Int. Conf. Sustain. Waste Manag. Through Des. (Springer, 2018), pp. 586–595.

  15. 15.

    N. Jain, P. Bhosale, V. Tale, R. Henry, and J. Pawar (2019). Eurasian J. Biosci. 13, 27.

    Google Scholar 

  16. 16.

    M. Darroudi, A. K. Zak, M. R. Muhamad, N. M. Huang, and M. Hakimi (2012). Mater. Lett. 66, 117.

    CAS  Article  Google Scholar 

  17. 17.

    S. E. Kim, J. Hyun Park, B. Cheol Lee, J. C. Lee, and Y. Ku Kwon (2012). Radiat. Phys. Chem. 81, 978.

    CAS  Article  Google Scholar 

  18. 18.

    K. Deekonda, S. Muniyandy, Y. Y. Lim, and P. Janarthanan (2016). Polymer 86, 147.

    CAS  Article  Google Scholar 

  19. 19.

    B. Ajitha, Y. A. K. Reddy, and P. S. Reddy (2015). Mater. Sci. Eng. C 49, 373.

    CAS  Article  Google Scholar 

  20. 20.

    G. D. Saratale, R. G. Saratale, G. Benelli, G. Kumar, A. Pugazhendhi, D.-S. Kim, and H.-S. Shin (2017). J. Clust. Sci. 28, 1709.

    CAS  Article  Google Scholar 

  21. 21.

    J. M. Jacob, M. S. John, A. Jacob, P. Abitha, S. S. Kumar, R. Rajan, S. Natarajan, and A. Pugazhendhi (2018). Mater. Res. Express.

    Article  Google Scholar 

  22. 22.

    M. Oves, M. Aslam, M. A. Rauf, S. Qayyum, H. A. Qari, M. S. Khan, M. Z. Alam, S. Tabrez, A. Pugazhendhi, and I. M. I. Ismail (2018). Mater. Sci. Eng. C 89, 429.

    CAS  Article  Google Scholar 

  23. 23.

    U. B. Jagtap and V. A. Bapat (2013). Ind. Crops Prod. 46, 132.

    CAS  Article  Google Scholar 

  24. 24.

    A. Pugazhendhi, D. Prabakar, J. M. Jacob, I. Karuppusamy, and R. G. Saratale (2018). Microb. Pathog. 114, 41.

    CAS  Article  Google Scholar 

  25. 25.

    Y. Junejo and A. Baykal (2014). Turkish J. Chem. 38, 765.

    CAS  Article  Google Scholar 

  26. 26.

    S. Sarkar, S. Chakraborty, and C. Bhattacharjee (2015). Ecotoxicol. Environ. Saf. 121, 263.

    CAS  Article  Google Scholar 

  27. 27.

    J. Choina, A. Bagabas, C. Fischer, G. U. Flechsig, H. Kosslick, A. Alshammari, and A. Schulz (2015). Catal. Today 241, 47.

    CAS  Article  Google Scholar 

  28. 28.

    S. Machado, W. Stawiński, P. Slonina, A. R. Pinto, J. P. Grosso, H. P. A. Nouws, J. T. Albergaria, and C. Delerue-Matos (2013). Sci. Total Environ. 461–462, 323.

    Article  Google Scholar 

  29. 29.

    Z. A. Tagar, N. Memon, M. H. Agheem, Y. Junejo, S. S. Hassan, N. H. Kalwar, and M. I. Khattak (2011). Sensors Actuators B Chem. 157, 430.

    CAS  Article  Google Scholar 

  30. 30.

    Q. Muhammad (2015). J. Ind. Eng. Chem. 31, 1.

    Article  Google Scholar 

  31. 31.

    Y. Junejo and M. Safdar (2015). Arab. J. Chem.

    Article  Google Scholar 

  32. 32.

    E. Elaiyappillai, S. Kogularasu, S.-M. Chen, M. Akilarasan, C. E. Joshua, P. M. Johnson, M. A. Ali, F. M. A. Al-Hemaid, and M. S. Elshikh (2019). Ultrason. Sonochem. 50, 255.

    CAS  Article  Google Scholar 

  33. 33.

    S. S. Hassan, Sirajuddin, A. R. Solangi, M. H. Agheem, Y. Junejo, N. H. Kalwar, and Z. A. Tagar (2011). J. Hazard. Mater. 190, 1030.

    CAS  Article  Google Scholar 

  34. 34.

    Y. Junejo and A. Baykal (2013). Cent. Eur. J. Chem 11, 1527.

    CAS  Google Scholar 

  35. 35.

    M. J. Iqbal, S. Ali, U. Rashid, M. Kamran, M. F. Malik, K. Sughra, N. Zeeshan, A. Afroz, J. Saleem, and M. Saghir (2018). Cell. Mol. Biol. (Noisy-Le-Grand) 64, 42.

    Article  Google Scholar 

  36. 36.

    L. C. L. de Abreu, V. Todaro, P. C. Sathler, L. C. R. P. da Silva, F. A. do Carmo, C. M. Costa, H. K. Toma, H. C. Castro, C. R. Rodrigues, V. P. de Sousa, and L. M. Cabral (2016). AAPS PharmSciTech. 17, 1421.

    Article  Google Scholar 

  37. 37.

    G. Access, I. Sondi, and B. Salopek-sondi (2004). J. Colloid Interface Sci. 275, 177.

    Article  Google Scholar 

  38. 38.

    K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh (2010). Nanomed. Nanotechnol. Biol. Med. 6, 257.

    CAS  Article  Google Scholar 

  39. 39.

    S. K. R. Namasivayam, S. Ganesh, and Avimanyu (2011). Int J Med Res. 1, 130.

    Google Scholar 

  40. 40.

    M. Zarei, A. Jamnejad, and E. Khajehali, Jundishapur (2014). J. Microbiol.

    Article  Google Scholar 

  41. 41.

    B. Sadeghi, M. Jamali, S. Kia, and S. Ghafari (2010). Int. J. Nano Dimens. 1, 119.

    Google Scholar 

  42. 42.

    D. Parial, H. K. Patra, A. K. Dasgupta, and R. Pal (2012). Eur. J. Phycol. 47, 22.

    CAS  Article  Google Scholar 

  43. 43.

    T. Leisner, A. Panas, A. Comouth, H. Saathoff, T. Leisner, M. Al-rawi, M. Simon, G. Seemann, O. Dössel, S. Mülhopt, H. Paur, S. Fritsch-decker, C. Weiss, and S. Diabaté (2016). Beilstein J. Nanotechnol. 5, 1590.

    Google Scholar 

  44. 44.

    B. Reidy, A. Haase, A. Luch, K. A. Dawson, and I. Lynch (2013). Materials (Basel) 6, 2295.

    CAS  Article  Google Scholar 

Download references


The authors would like to thank Dr. Ghulam Shabir, Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan for giving us bacterial strains and the necessary facilities.


The study was supported by a departmental research Grant (No. 00129865).

Author information




YJ, GMQ and MS designed and performed the experiments. MS and RAK performed the measurements. KD, YJ, MAG and QS analyzed the measurement data. MO and MS finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yasmeen Junejo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Availability of data and materials

All data supporting the conclusions of this article are included in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Safdar, M., Qumar, G.M., Saravanan, M. et al. Synthesis and Characterization of Cefditoren Capped Silver Nanoparticles and Their Antimicrobial and Catalytic Degradation of Ibuprofen. J Clust Sci 30, 1663–1671 (2019).

Download citation


  • Green synthesis
  • Cef-Ag-NPs
  • Ibuprofen
  • Catalytic activity
  • Antibacterial efficacy
  • Bacterial pathogens