Geometric and Optical Properties of Cluster Model of Yb-doped Silica Optical Fiber


Based on the 6-membered ring cluster model, geometric and optical properties of cluster model of Yb-doped silica optical fiber is researched by using first-principles calculations. It can be revealed that the interstitial Yb-doped model is geometrically and optically closer to the local structures of Yb-doped silica optical fibers. In interstitial Yb-doped model, the coordination number of Yb to O is 6, and the oscillator strengths of excited levels are stronger than the substitutional Yb-doped model. We construct the Yb–Al co-doped and Yb–P co-doped models based on the interstitial Yb-doped model, and calculate the absorption spectra of these co-doped models. It can be proposed that co-doping with Yb and Al is responsible for the ~ 1030 nm absorption.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    T. Deschamps, N. Ollier, H. Vezin, and C. Gonnet (2012). J. Chem. Phys. 136, 014503.

    CAS  Article  Google Scholar 

  2. 2.

    R. Luo, W. Li, C. Hou, and P. Wang (2017). ECS J. Solid State Sci. 6, 138–143.

    Article  Google Scholar 

  3. 3.

    K. Peng, Y. Wang, L. Ni, Z. Wang, C. Gao, H. Zhan, J. Wang, F. Jing, and A. Lin (2015). Laser Phys. 25, 065801.

    Article  Google Scholar 

  4. 4.

    D. Richardson, J. Nilsson, and W. Clarkson (2010). J. Opt. Soc. Am. B 27, 63–92.

    Article  Google Scholar 

  5. 5.

    M. Zervas and C. Codemard (2014). IEEE J. Sel. Top. Quant. 20, 219–241.

    Article  Google Scholar 

  6. 6.

    Z. Wang, H. Zhan, L. Ni, K. Peng, X. Wang, J. Wang, F. Jing, and A. Lin (2015). Laser Phys. 25, 115103.

    Article  Google Scholar 

  7. 7.

    J. Dong, W. Gao, Q. Han, Y. Wang, J. Qi, X. Yan, and M. Sun (2019). Rev. Phys. 4, 100026.

    Article  Google Scholar 

  8. 8.

    K. Bi, D. Yang, J. Chen, Q. Wang, H. Wu, C. Lan, and Y. Yang (2019). Photonics Res. 7, 457–463.

    Article  Google Scholar 

  9. 9.

    S. Lin, H. Wang, F. Wu, Q. Wang, X. Bai, D. Zu, J. Song, D. Wang, Z. Liu, Z. Li, N. Tao, K. Huang, M. Lei, B. Li, and H. Wu (2019). npj Flex. Electron. 3, 6.

    Article  Google Scholar 

  10. 10.

    K. Mattsson and J. Broeng (2009). Int. Soc. Opt. Photonics 7195, 71950V.

    Google Scholar 

  11. 11.

    S. Liu, H. Zhan, K. Peng, S. Sun, Y. Li, J. Jiang, L. Ni, X. Wang, J. Yu, and R. Zhu (2018). Opt. Fiber Technol. 46, 297–301.

    CAS  Article  Google Scholar 

  12. 12.

    J. Koponen, M. Söderlund, J. Hoffman, D. Kliner, and J. Koplow (2007). Int. Soc. Opt. Photonics 6453, 64531E.

    Google Scholar 

  13. 13.

    T. Deschamps, H. Vezin, C. Gonnet, and N. Ollier (2013). Opt. Express 21, 8382–8392.

    CAS  Article  Google Scholar 

  14. 14.

    I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Doua, and F. Salin (2007). Opt. Express 15, 1606–1611.

    Article  Google Scholar 

  15. 15.

    C. Carlson, K. Keister, P. Dragic, A. Croteau, and J. Eden (2010). J. Opt. Soc. Am. B 27, 2087–2094.

    CAS  Article  Google Scholar 

  16. 16.

    A. G. Chávez, A. Kir’Yanov, Y. O. Barmenkov, and N. Il’Ichev (2007). Laser Phys. Lett. 4, 734.

    Article  Google Scholar 

  17. 17.

    S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof (2008). Opt. Express 16, 15540–15545.

    CAS  Article  Google Scholar 

  18. 18.

    M. A. Melkumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov (2004). Quantum Electron. 34, 843–848.

    CAS  Article  Google Scholar 

  19. 19.

    S. Ohara and Y. Kuroiwa (2009). Opt. Express 17, 14104–14108.

    CAS  Article  Google Scholar 

  20. 20.

    R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna (1997). IEEE J. Quantum Electron. 33, 1049–1056.

    CAS  Article  Google Scholar 

  21. 21.

    S. She, W. Li, C. Chang, Z. Li, J. Zheng, S. Gao, Y. Zhang, G. Li, Q. Gao, and W. Zhao (2018). Appl. Opt. 57, 7943–7949.

    CAS  Article  Google Scholar 

  22. 22.

    R. Mozzi and B. Warren (1969). J. Appl. Cryst. 2, 164–172.

    CAS  Article  Google Scholar 

  23. 23.

    C. Jesurum, V. Pulim, and L. W. Hobbs (1998). Nucl. Instrum. Methods B 141, 25–34.

    CAS  Article  Google Scholar 

  24. 24.

    M. Sitarz, W. Mozgawa, and M. Handke (1999). J. Mol. Struct. 511, 281–285.

    Article  Google Scholar 

  25. 25.

    A. Pasquarello and R. Car (1998). Phys. Rev. Lett. 80, 5145–5147.

    CAS  Article  Google Scholar 

  26. 26.

    G. Kresse and J. Hafner (1993). Phys. Rev. B 47, 558–561.

    CAS  Article  Google Scholar 

  27. 27.

    G. Kresse and J. Hafner (1994). Phys. Rev. B 49, 14251.

    CAS  Article  Google Scholar 

  28. 28.

    G. Kresse and J. Furthmüller (1996). Phys. Rev. B 54, 11169.

    CAS  Article  Google Scholar 

  29. 29.

    G. Kresse and D. Joubert (1999). Phys. Rev. B 59, 1758.

    CAS  Article  Google Scholar 

  30. 30.

    B. Jia, P. Lu, Z. Peng, B. Yan, B. Yang, Y. Wang, and G.-D. Peng (2018). J. Lumin. 198, 384–388.

    CAS  Article  Google Scholar 

  31. 31.

    L. Wu, P. Lu, R. Quhe, Q. Wang, C. Yang, P. Guan, and K. Yang (2018). J. Mater. Chem. A 6, 7933–7941.

    CAS  Article  Google Scholar 

  32. 32.

    Q. Wang, X. Li, L. Wu, P. Lu, and Z. Di (2019). Phys. Status Solidi RRL 13, 1800461.

    Article  Google Scholar 

  33. 33.

    H. Wang, R. P. Liu, Y. T. Li, X. J. Lü, Q. Wang, S. Q. Zhao, K. J. Yuan, Z. M. Cui, X. Li, S. Xin, R. Zhang, M. Lei, and Z. Q. Lin (2018). Joule 2, 337–348.

    CAS  Article  Google Scholar 

  34. 34.

    J. Zhang, L. Han, Z. Guan, B. Jia, Z. Peng, X. Guan, B. Yan, G.-D. Peng, and P. Lu (2019). J. Lumin. 207, 346–350.

    CAS  Article  Google Scholar 

  35. 35.

    K. Bi, M. H. Bi, Y. N. Hao, W. Luo, Z. M. Cai, X. H. Wang, and Y. H. Huang (2018). Nano Energy 51, 513–523.

    CAS  Article  Google Scholar 

  36. 36.

    X. T. Wang, Y. Cui, T. Li, M. Lei, J. B. Li, and Z. M. Wei (2019). Adv. Opt. Mater. 7, 1801274.

    Article  Google Scholar 

  37. 37.

    L. Wu, P. Lu, Y. Li, Y. Sun, J. Wong, and K. Yang (2018). J. Mater. Chem. A 6, 24389–24396.

    CAS  Article  Google Scholar 

  38. 38.

    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    CAS  Article  Google Scholar 

  39. 39.

    P. Lu, T. Ren, B. Jia, B. Yan, G. Liu, M. Guo, Y. Wang, and G.-D. Peng (2018). IEEE J. Sel. Top. Quant. 24, 1–5.

    Google Scholar 

  40. 40.

    M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery, T. Vreven, K. Kudin, and J. Burant, (Gaussian, Inc., Wallingford CT, 2013).

  41. 41.

    J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch (1992). J. Phys. Chem. 96, 135–149.

    CAS  Article  Google Scholar 

  42. 42.

    Y. Wang and M. Dolg (1998). Theor. Chem. Acc. 100, 124–133.

    CAS  Article  Google Scholar 

  43. 43.

    F. Tielens, C. Gervais, J. F. Lambert, F. Mauri, and D. Costa (2008). Chem. Mater. 20, 3336–3344.

    CAS  Article  Google Scholar 

  44. 44.

    N. Richard, S. Girard, L. Martin-Samos, V. Cuny, A. Boukenter, Y. Ouerdane, and J.-P. Meunier (2011). J. Non-Cryst. Solids 357, 1994–1999.

    CAS  Article  Google Scholar 

  45. 45.

    H. Uhlig, M.-J. Hoffmann, and S. Steeb (1998). Z. Naturforsch. A 53, 259–264.

    CAS  Article  Google Scholar 

  46. 46.

    J. Sampaio and S. Gama (2004). Phys. Rev. B 69, 104203.

    Article  Google Scholar 

  47. 47.

    U. Hoppe, R. K. Brow, D. Ilieva, P. Jóvári, and A. C. Hannon (2005). J. Non-Cryst. Solids 351, 3179–3190.

    CAS  Article  Google Scholar 

  48. 48.

    P. Jelger, M. Engholm, L. Norin, and F. Laurell (2010). J. Opt. Soc. Am. B 27, 338–342.

    CAS  Article  Google Scholar 

  49. 49.

    L. Zhang, T. Xue, D. He, M. Guzik, and G. Boulon (2015). Opt. Express 23, 1505–1511.

    CAS  Article  Google Scholar 

Download references


This work was supported by the Open Program of State Key Laboratory of Functional Materials for Informatics. We acknowledge the computational support from the Beijing Computational Science Research Center (CSRC).

Author information



Corresponding authors

Correspondence to Bin Yang or Pengfei Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Jia, B., Hu, H. et al. Geometric and Optical Properties of Cluster Model of Yb-doped Silica Optical Fiber. J Clust Sci 30, 1205–1210 (2019).

Download citation


  • First-principles
  • Cluster model
  • Energy levels
  • Absorption spectra