Skip to main content
Log in

Greener Approach for Leather Tanning Using Less Chrome with Plant Tannins and Tannins Mediated Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Making out animal skins or hides to leather is commonly called as tanning. This research was done for utilizing tannins of some medicinal plants and tannin induced green-synthesized silver nanoparticles along with minimal concentration of chromium to enhance the physical and mechanical properties of leather and thereby reducing the pollution caused by chromium in effluent which crucially affect the soil fertility, ground and surface water. In this study, Cassia alata, Euphorbia hirta, Thespesia populnea and Wrightia tinctoria were collected and tannins were extracted from the leaves. Tannins were utilized for production of silver nanoparticles. The extracted tannins and tannin induced silver nanoparticles were characterized, where the silver nanoparticles were found to be crystalline. Further, the tannin and tannin induced silver nanoparticles were used in leather processing either alone or in combination with chromium. The quality of tannin/silver nanoparticle treated leather was compared with chemically tanned leather for its tensile strength, tear strength, shrinking temperature, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. S. Lawal and C. P. Odums (2015). Br. J. Appl. Sci. Technol. 5, (6), 588.

    Article  CAS  Google Scholar 

  2. Y. Li, Z. H. Shan, S. X. Shao, and K. Q. Shi (2006). J. Soc. Leather Technol. Chem. 5, 214.

    Google Scholar 

  3. A. D. Covington Tanning Chemistry: The Science of Leather (Royal Society of Chemistry, London, 2009).

    Google Scholar 

  4. M. Doble and A. K. Kruthiventi (2007). Green Chem. Eng. 111, 245.

    Article  Google Scholar 

  5. J. Boren and B. J. Hurd (2004). Tanning deer hides and small fur skins. New Mexico State University, Cooperative Extension Service, Las Cruces, New Mexico. Guide L-103.

  6. D. Tegtmeyer and M. Kleban (2013). IULTCS. IUR-1, 1-10.

  7. M. Mwinyihija, A. Meharg, J. Dawson, N. J. Strachan, and K. Killham (2006). Arch. Environ. Contam. Toxicol. 50, (3), 316.

    Article  CAS  Google Scholar 

  8. M. Sathiyamoorthy, V. Selvi, D. Mekonnen, and S. Habtamu (2013). J. Eng. Comput. Appl. Sci. (JEC&AS) 2, (5), 17.

    Google Scholar 

  9. V. Tare, S. Gupta, and P. Bose (2003). J. Air Waste Manag. Assoc. 53, (8), 976.

    Article  CAS  Google Scholar 

  10. S. Rajamani, R. Suthathrarajan, E. Ravindranath, A. Mulder, J. W. V. Groenestijn, and J. S. A. Langerwerf (1997). Proceedings of the 31st Leather Research Industry Get-Together; Central Leather Research Institute: Adyar, India, 57.

  11. M. A. Jianzhong, Y. Li, B. Lu, G. Dangge, and W. Likun (2011). Accessed 24, 2.

    Google Scholar 

  12. L. Gu, M. A. Kelm, J. F. Hammerstone, Z. Zhang, G. Beecher, J. Holden, and R. L. Prior (2003). J. Mass Spectrom. 38, (12), 1272.

    Article  CAS  Google Scholar 

  13. C. Santos-Buelga and G.Williamson, Royal Society of Chemistry (Great Britain) (2003). Methods in polyphenol analysis. Cambridge: Royal Society of Chemistry. 1–5.

  14. A. E. Hagerman, C. T. Robbins, Y. Weerasuriya, T. C. Wilson, and C. McArthur (1992). J. Range Manag. 45, (1), 57.

    Article  Google Scholar 

  15. C. Ogiwara, Practical Guide to Leather Processing (Tokyo Japan Ferozsons printers Ltd, Tokyo, 1980), pp. 103–123.

    Google Scholar 

  16. R. Reed (Ed.) (2016). Science for Students of Leather Technology: The Commonwealth and International Library: Technology Division a Modern Course in Leather Technology, 1.

  17. T. C. Thorstensen Practical Leather Technology (RE Krieger Pub. Co., Florida, 1993), pp. 293–317.

    Google Scholar 

  18. F. Haojun, S. Bi, L. Shifang, and D. Zhenji (2002). China Leather. (1), 01.

  19. Y. Lu, Y. Chen, H. Fan, B. Peng, and B. Shi (2009). International Union of Leather Technologists and Chemists Societies IULTCS XXX, in Congress. Beijing, China.

  20. X. F. Zhang, Z. G. Liu, W. Shen, and S. Gurunathan (2016). Int. J. Mol. Sci. 17, (9), 1534.

    Article  Google Scholar 

  21. A. V. Samrot, N. Shobana, and R. Jenna (2018). BioNanoScience 8, 632.

    Article  Google Scholar 

  22. A. V. Samrot, P. Raji, A. J. Selvarani, and P. Nishanthini (2018). Biocatal. Agric. Biotechnol. 16, 253.

    Article  Google Scholar 

  23. A. V. Samrot, Silky, C. V. Ignatious, P. Raji, C. SaiPriya, and J. A. Selvarani (2019). J. Pure Appl. Microbiol. https://doi.org/10.22207/jpam.13.1.

    Article  Google Scholar 

  24. K. Renugadevi, V. Aswini, and P. Raji (2012). Asian J. Pharm. Clin. Res. 5, (4), 283.

    CAS  Google Scholar 

  25. A. J. Harborne, Phytochemical Methods a Guide to Modern Techniques of Plant Analysis (Springer, Berlin, 1998).

    Google Scholar 

  26. P. Raji, A. V. Samrot, D. B. Rohan, M. D. Kumar, R. Geetika, V. K. Sharma, and D. Keerthana (2019). Rasayan J. Chem. 12, (1), 123.

    Article  CAS  Google Scholar 

  27. D. Dhawan and J. Gupta (2017). Int. J. Biol. Chem. 11, 17.

    CAS  Google Scholar 

  28. V. L. Singleton and J. A. Rossi (1965). American journal of Enology and Viticulture. 16, (3), 144.

    CAS  Google Scholar 

  29. S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, (1), 17.

    Article  CAS  Google Scholar 

  30. P. Raji, A. V. Samrot, D. Keerthana, and S. Karishma (2019). J. Clust. Sci. https://doi.org/10.1007/s10876-019-01547-2.

    Article  Google Scholar 

  31. M. Salehi, I. Kadim, O. Mahgoub, S. Negahdari, and R. E. Naeeni (2014). Anim. Prod. Sci. 54, (5), 638.

    Article  Google Scholar 

  32. C. Y. Ishak and I. E. H. Elgailani (2016). Pak. J. Anal. Environ. Chem. 17, (1), 7.

    Google Scholar 

  33. P. Sathishkumar, J. Preethi, R. Vijayan, A. R. M. Yusoff, F. Ameen, S. Suresh, and T. Palvannan (2016). J. Photochem. Photobiol. B Biol. 163, 69.

    Article  CAS  Google Scholar 

  34. A. T. Yusuff, A. A. Adesiyun, and T. R. Fayeye (2013). Int. J. Phytofuels Allied Sci. 2, (1), 125.

    Google Scholar 

  35. K. Lertchunhakiat, M. Keela, P. Yodmingkhwan, W. Sirirotjanaput, and A. Rungroj (2016). Agric. Agric. Sci. Procedia 11, 143.

    Google Scholar 

  36. A. Kuria, J. Ombui, A. Onyuka, A. Sasia, C. Kipyegon, P. Kaimenyi, and A. Ngugi (2016). IOSR J. Agric. Vet. Sci. (IOSRJAVS) 9, 13.

    Article  Google Scholar 

  37. S. Sivasubramanian, B. M. Manohar, and R. Puvanakrishnan (2008). Chemosphere 70, (6), 1025.

    Article  CAS  Google Scholar 

  38. UNIDO, Acceptable Quality Standards in the Leather and Footwear Industry (United Nations Industrial Development Organization, Vienna, 1996).

    Google Scholar 

  39. V. Suresh, M. Kanthimathi, P. Thanikaivelan, J. R. Rao, and B. U. Nair (2001). J. Clean. Prod. 9, (6), 483.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony V. Samrot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raji, P., Samrot, A.V., Bhavya, K.S. et al. Greener Approach for Leather Tanning Using Less Chrome with Plant Tannins and Tannins Mediated Nanoparticles. J Clust Sci 30, 1533–1543 (2019). https://doi.org/10.1007/s10876-019-01597-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01597-6

Keywords

Navigation