Skip to main content
Log in

In Vitro Biocidal Actions of Rhus verniciflua Bark Extract Wrapped Gold Nanoballs Against Biofilm-Forming Food-Borne Bacterial Pathogens

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The research for innovative antibiofilm drugs is essential due to the increased microbial resistance to antibiotics presently in use. Now a day’s natural products wrapped nano biomaterial play an important role in the field of medicine. The aqueous bark extracts of Rhus verniciflua was used to synthesize gold nanoparticles (Rh-AuNPs) by green method. The synthesized nanoparticles were characterized (optical property, crystallinity, functional groups, size, shape and purity) by UV–vis spectroscopy (UV), X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field emission transmission electron microscopy (FE-TEM) with Energy dispersive X-ray (EDX). An effective antioxidant activity was observed at 100 μg/ml of Rh-AuNPs. The acridine orange, live and dead (PI-SYTO-9) staining assay using confocal laser scanning microscopic,   results evidanced that the Rh-AuNPs (100 μg/ml) was effectively inhibited the biofilms of Escherichia coli and Staphylococcus aureus. In addition, Rh-AuNPs also significantly inhibited the cell surface hydrophobicity of both E. coli and S. aureus at 100 μg/ml. This study reports antibacterial potency of Rh-AuNPs and that have significant therapeutic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. R. Cooper (1991). Immunol. Today 12, 327.

    CAS  PubMed  Google Scholar 

  2. T.-F. C. Mah and G. A. O’Toole (2001). Trends Microbiol. 9, 34.

    CAS  PubMed  Google Scholar 

  3. N. B. Oral, L. Vatansever, B. D. Aydin, C. Sezer, A. Güven, M. Gülmez, et al. (2010). Kafkas Universitesi Veteriner Fakultesi Dergisi 16, S23.

    Google Scholar 

  4. E. Le Magrex-Debar, J. Lemoine, M. P. Gellé, L. F. Jacquelin, and C. Choisy (2000). Int. J Food Microbiol. 55, 239.

    PubMed  Google Scholar 

  5. A. Bridier, P. Sanchez-Vizuete, M. Guilbaud, J. C. Piard, M. Naïtali, and R. Briandet (2015). Food Microbiol. 45, 167.

    CAS  PubMed  Google Scholar 

  6. I. Olsen (2015). Eur. J. Clin. Microbiol. Infect. Dis. 34, 877.

    CAS  PubMed  Google Scholar 

  7. V. Ramalingam, S. Dhanasundari, P. Nithiya, and R. Rajaram (2017). Ind. J. Chem. Technol. 24, 336.

    CAS  Google Scholar 

  8. V. Ramalingam, S. Revathidevi, T. S. Shanmuganayagam, L. Muthulakshmi, and R. Rajaram (2017). Gold Bull. 50, 177.

    CAS  Google Scholar 

  9. M. P. Patil and G.-D. Kim (2017). Appl. Microbiol. Biotechnol. 101, 79.

    CAS  PubMed  Google Scholar 

  10. M. Shah, D. Fawcett, S. Sharma, et al. (2015). Materials 8, 7278.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. P. Manivasagan, S. Y. Nam, and J. Oh (2016). Crit. Rev. Microbiol. 42, 1007.

    CAS  PubMed  Google Scholar 

  12. T. S. Dhas, V. G. Kumar, L. S. Abraham, et al. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 99, 97.

    Google Scholar 

  13. S. K. Das, C. Dickinson, F. Lafir, et al. (2012). Green Chem. 14, 1322.

    CAS  Google Scholar 

  14. P. Kappusamy, M. M. Yusoff, G. P. Maniam, et al. (2016). Saudi Pharm. J. 24, 473.

    Google Scholar 

  15. D. Mubarak Ali, N. Thanuddin, K. Jeganathan, et al. (2011). Colloids Surf B 85, 360.

    CAS  Google Scholar 

  16. R. Suryawanshi, C. Patil, H. Borase, et al. (2015). Parasitol. Int. 64, 353.

    Google Scholar 

  17. N. Soni and S. Prakash (2014). Sci. World J.. https://doi.org/10.1155/2014/496362.

    Article  Google Scholar 

  18. A. Lakshmana, C. Umamaheswari, and N. S. Nagarajan (2016). J. Nanosci. Technol. 2, 76.

    Google Scholar 

  19. M. P. Patil, D. Ngabire, H. H. P. Thi, et al. (2017). J. Clust. Sci. 28, 119.

    CAS  Google Scholar 

  20. H. Hiramatsu and F. E. Osterloh (2004). Chem. Mater. 16, 2509.

    CAS  Google Scholar 

  21. J. Turkevich, P. C. Stevenson, and J. Hillier (1951). Discuss. Faraday Soc. 11, 55.

    Google Scholar 

  22. A. Yahim-Ammar, D. Sierra, F. Merola, et al. (2016). ACS Nano 10, 2591.

    Google Scholar 

  23. M. M. Bargazani and J. Rohloff (2016). Food Control 61, 156.

    Google Scholar 

  24. M. Di Giulio, S. Genovese, S. Fiorito, F. Epifano, A. Nostro, and L. Cellini (2016). Nat. Prod. Res. 30, 1870.

    PubMed  Google Scholar 

  25. B. Anonymous (1993). Gram 28, 13.

    Google Scholar 

  26. M. M. Cowan (1999). Clin. Microbiol. Rev. 12, 564.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. C. S. Na, B. R. Choi, D. W. Choo, W. I. Choi, J. B. Kim, H. J. Kim, Y. J. Chung, Y. I. Park, and M. S. Dong (2005). Yakhak Hoeji 49, 471.

    CAS  Google Scholar 

  28. J.-S. Kim, Y.-S. Kwon, W.-J. Chun, T.-Y. Kim, J. Sun, C.-Y. Yu, and M.-J. Kim (2010). Food Chem. 120, 539.

    CAS  Google Scholar 

  29. S. H. Lee, H. S. Jeong, and T. S. Kang (2013). Food Eng. Prog. 17, 1.

    Google Scholar 

  30. S. Y. Kang, J.-Y. Kang, and M.-J. Oh (2012). J. Microbiol. 50, 293.

    CAS  PubMed  Google Scholar 

  31. W. C. Choi, H. S. Jung, K. S. Kim, S. K. Lee, S. W. Yoon, J. H. Park, S. H. Kim, S. H. Cheon, W. K. Eo, and S. H. Lee (2011). J. Biomed. Biotechnol. 2012, 1.

    Google Scholar 

  32. C. S. Na, B. R. Choi, D. W. Choo, W. I. Choi, J. B. Kim, H. C. Kim, Y. I. Park, and M. S. Dong (2005). J. Toxicol. Public Health 21, 309.

    CAS  Google Scholar 

  33. S. A. Kim, S. H. Kim, I. S. Kim, D. Lee, M. S. Dong, C. S. Na, N. X. Nhiem, and H. H. Yoo (2013). Food Chem. 141, 3813.

    CAS  PubMed  Google Scholar 

  34. S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, N. Gopi, P. Ekambaram, R. Pachaiappan, P. Velusamy, K. Murugan, G. Benelli, R. Suresh Kumar, and M. Suriyanarayanamoorthy (2017). Microb. Pathog. 102, 173.

    CAS  PubMed  Google Scholar 

  35. K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura (1992). J. Agric. Food Chem. 40, 945.

    CAS  Google Scholar 

  36. CLSI Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, vol. 32 (Clinical and Laboratory Standards Institute, Wayne, 2012), p. 69.

    Google Scholar 

  37. R. S. Pembrey, K. C. Marshall, and R. P. Schneider (1999). Appl. Environ. Microbiol. 65, 2877.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. R. Vaikundamoorthy, R. Rajendran, A. Selvaraju, K. Moorthy, and S. Perumal (2018). Bioorg. Chem. 77, 494.

    CAS  PubMed  Google Scholar 

  39. D. Divakaran, R. I. Jaya, M. Thakur, M. K. Kumawat, and R. Srivastava (2019). Mater. Lett. 236, 498.

    CAS  Google Scholar 

  40. G. Balasubramani, R. Ramkumar, R. Karthik Raja, D. Aiswarya, C. Rajthilak, and P. Perumal (2017). J. Clust. Sci. 28, 259.

    CAS  Google Scholar 

  41. P. Darshani, M. B. Gumpu, P. Thumpati, J. B. B. Rayappan, V. Ravichandiran, G. P. Pazhani, and M. Veerapandian (2018). J. Photochem. Photobiol. 182, 122.

    CAS  Google Scholar 

  42. B. Sadeghi, M. Mohammadzadeh, and B. Babakhani (2015). J. Photochem. Photobiol. 148, 101.

    CAS  Google Scholar 

  43. C. Wang, R. Mathiyalagan, Y. J. Kim, V. Castro-Aceituno, P. Singh, S. Ahn, D. Wang, and D. C. Yang (2016). Int. J. Nanomed. 11, 3691.

    CAS  Google Scholar 

  44. A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry (2003). Colloids Surf. B Biointerfaces 28, 313.

    CAS  Google Scholar 

  45. V. P. N. Sanna, G. Dessì, P. Manconi, A. Mariani, S. Dedola, M. Rassu, C. Crosio, C. Iaccarino, and M. Sechi (2014). Int. J. Nanomed. 9, 4935.

    Google Scholar 

  46. B. E. Naveena and S. Prakash (2013). Asian J. Pharm. Clin. Res. 6, 179.

    Google Scholar 

  47. World Health Organization (WHO), Antimicrobial resistance. Fact sheet N 194 (WHO, Geneva, 2015). http://www.who.int/mediacentre/factsheets/fs194/en. Updated April, 2015.

  48. G. Magi, E. Marini, and B. Facinelli (2015). Front. Microbiol. 6, 1.

    Google Scholar 

  49. A. Rai, A. Prabhune, and C. C. Perry (2010). J. Mater. Chem. 20, 6789.

    CAS  Google Scholar 

  50. N. Srivastava and M. Mukhopadhyay (2015). J. Clust. Sci. 26, 675.

    CAS  Google Scholar 

  51. G. Applerot, J. Lellouche, N. Perkas, N. Yeshayahu, A. Gedanken, and E. Banin (2012). RSC Adv. 2, 2314.

    CAS  Google Scholar 

  52. A. Hequet, V. Humblot, J. M. Berjeaud, and C. M. Pradier (2011). Colloids Surf. B. 84, 301.

    CAS  Google Scholar 

  53. D. Pavithra and M. Doble (2008). Biomed. Mater. 3, 34003.

    CAS  Google Scholar 

  54. F. Sun, F. Qu, Y. Ling, P. Mao, P. Xia, H. Chen, and D. Zhou (2013). Future Microbiol. 8, 877.

    CAS  PubMed  Google Scholar 

  55. L. C. Simões, M. Simões, and M. J. Vieira (2007). Appl. Environ. Microbiol. 73, 6192.

    PubMed  PubMed Central  Google Scholar 

  56. S. K. R. Namasivayam, B. Beninton, B. Christo, S. M. Karthigai, K. Arun Muthu Kumar, and K. Deepak (2013). Glob. J. Med. Res. 13, 1.

    Google Scholar 

  57. J.A. Lizana, S. López, A. Marchal, U. Serrano, D. Velasco, and M. Espinosa-Urgel, High School Students for Agricultural Science Research, in Proceedings of the 3rd Congress PIIISA, 2013. Use of plant extracts to block bacterial biofilm formation, pp. 43–50.

  58. S. Manju, B. Malaikozhundan, S. Vijayakumar, S. Shanthi, A. Jaishabanu, P. Ekambaram, and B. Vaseeharan (2016). Microb. Pathog. 91, 129.

    CAS  PubMed  Google Scholar 

  59. J. K. Miller, R. Neubig, C. B. Clemons, K. L. Kreider, J. P. Wilber, G. W. Young, et al. (2013). Ann. Biomed. Eng. 41, 53.

    CAS  PubMed  Google Scholar 

  60. M. M. Mohamed, S. A. Fouad, H. A. Elshoky, G. M. Mohammed, and T. A. Salaheldin (2017). IJVSM 5, 23.

    PubMed  Google Scholar 

  61. N. J. Millenbaugh, J. B. Baskin, M. N. DeSilva, W. R. Elliott, and R. D. Glickman (2015). Int. J. Nanomed. 10, 1953.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Agriculture Food and rural Affairs (318077-2). The second author KS thanks the Korea Research Fellowship (KRF) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (2017H1D3A1A01052610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong-Hyeon Wang.

Ethics declarations

Conflict of interest

The authors stated no conflicts of interest in this study.

Ethical Approval

No ethical clearance is needed for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, S., Saravanakumar, K., Hu, X. et al. In Vitro Biocidal Actions of Rhus verniciflua Bark Extract Wrapped Gold Nanoballs Against Biofilm-Forming Food-Borne Bacterial Pathogens. J Clust Sci 30, 1489–1499 (2019). https://doi.org/10.1007/s10876-019-01592-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01592-x

Keywords

Navigation