Skip to main content

Advertisement

Log in

Novel and Facile Synthesis of Sea Anemone Adhesive Protein-Coated ZnO Nanoparticles: Antioxidant, Antibiofilm, and Mosquito Larvicidal Activity Against Aedes aegypti

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Recently, marine bio-products have provided a new insight on biomaterials for pharmaceutical applications. Herein, the use of adhesive protein in the fabrication of bio-inspired nanomaterials noted to the possible realization of vital biomedical applications. This study illustrates the biosynthesize ZnO nanoparticles (ZnO NPs) using adhesive protein from sea anemone Stichodactyla haddoni (ShAp). ShAp-ZnO NPs were characterized via SDS-PAGE, UV–Visible, XRD, FTIR, TEM and SAED. The molecular weight of the adhesive protein was determined by SDS-PAGE to be between 36 and 42 kDa. The UV–Vis peak of ShAp-ZnO NPs was revealed at 210 nm while XRD exhibited the crystalline nature of ShAp-ZnO NPs. FTIR revealed that functional group of ShAp-ZnO NPs, which exhibited peaks at 3441.31–1073.36 cm−1. HR-TEM revealed that ShAp-ZnO NPs obtained structure were hexagonal with 10 nm diameter. The antioxidant properties of ShAp, zinc acetate, and ShAp-ZnO NPs were noted at 100 µg/mL. Further, microscopic analysis demonstrated that 50 µg/mL of ShAp, zinc acetate, and ShAp-ZnO NPs efficiently repressed the biofilm formation of both Gram(+) and Gram(−) bacteria. In addition, maximal larvicidal effects were noticed at 100 µg/mL of ShAp-ZnO NPs against the 3rd instar of Aedes aegypti. Overall, the ShAp-ZnO NPs could have entomological and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Barresi, E. Di Carlo, M. R. Trapani, M. G. Parisi, C. Chille, M. F. Mule, M. Cammarata, and F. Palla (2015). Herit. Sci. 3, 2–4.

    Article  CAS  Google Scholar 

  2. Y. Shimizu (1985). J. Nat. Prod. 48, 223–235.

    Article  CAS  PubMed  Google Scholar 

  3. P. Devi, S. Wahidullah, T. Kamat, and L. D. Souza (2011). Indian J. Geo Mar. Sci. 40, 338–346.

    Google Scholar 

  4. D. Krishnaiah, R. Sarbatly, and A. Bono (2007). Biotechnol. Mol Biol. Rev. 1, 97–104.

    Google Scholar 

  5. R. E. Baier (2015). J. Surf. Eng. Mater. Adv. Technol. 5, 42–51.

    CAS  Google Scholar 

  6. Q. Lin, D. Gourdon, C. Sun, N. Holten-Andersen, T. H. Anderson, J. H. Waite, and J. N. Israelachvili (2007). Proc. Natl. Acad. Sci. USA 104, 3782–3786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. Anderluh and P. Macek (2002). Toxicon 40, 111–124.

    Article  CAS  PubMed  Google Scholar 

  8. T. Turk (1991). J. Toxicol. Toxin. Rev. 10, 223–262.

    Article  CAS  Google Scholar 

  9. W. R. Kem, M. W. Pennington, and R. S. Norton (1999). Perspect. Drug Discov. Des. 15, 111–129.

    Article  Google Scholar 

  10. L. Beress (1982). Pure Appl. Chem. 54, 1981–1994.

    Article  CAS  Google Scholar 

  11. H. Lee, D. S. Um, Y. Lee, S. Lim, H. Kim, and H. Ko (2016). Adv. Mater. 28, 7457–7465.

    Article  CAS  PubMed  Google Scholar 

  12. S. Thangaraj and S. Bragadeeswaran (2012). J. Venom. Anim. Toxins Incl. Trop. Dis. 18, 53–61.

    Google Scholar 

  13. J. Rocha, L. Peixe, N. C. M. Gomes, and R. Calado (2011). Mar. Drugs 9, 1860–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. G. P. Williams, S. Babu, S. Ravikumar, K. Kathiresan, S. A. Arul Prathao, and S. Chinnappa raj (2007). J. Environ. Biol. 28, 782–793.

    Google Scholar 

  15. S. Nazar, S. Ravikumar, G. P. Williams, M. S. Ali, and P. Suganthi (2009). Ind. J. Sci. Technol. 2, 24–27.

    Google Scholar 

  16. G. Benelli and J. C. Beier (2017). Acta Trop. 174, 91–96.

    Article  PubMed  Google Scholar 

  17. G. Benelli and M. F. Duggan (2018). Acta Trop. 182, 80–91.

    Article  PubMed  Google Scholar 

  18. M. Govindarajan, S. L. Hoti, M. Rajeswary, and G. Benelli (2016). Parasitol. Res. 115, 2685–2695.

    Article  PubMed  Google Scholar 

  19. M. Govindarajan, M. Rajeswary, and G. Benelli (2016). Ecotoxicol. Environ. Saf. 129, 85–90.

    Article  CAS  PubMed  Google Scholar 

  20. G. Benelli, F. Maggi, R. Pavela, K. Murugan, M. Govindarajan, B. Vaseeharan, R. Petrelli, L. Cappellacci, S. Kumar, A. Hofer, M. R. Youssefi, A. A. Alarfaj, J. S. Hwang, and A. Higuchi (2018). Environ. Sci. Pollut. Res. 25, 10184–10206.

    Article  CAS  Google Scholar 

  21. M. Govindarajan (2011). Parasitol. Res. 109, 93–103.

    Article  PubMed  Google Scholar 

  22. R. Pavela, F. Maggi, R. Iannarelli, and G. Benelli (2019). Acta Trop.. https://doi.org/10.1016/j.actatropica.2019.01.019. (in press).

    Article  PubMed  Google Scholar 

  23. M. Govindarajan, M. Rajeswary, U. Muthukumaran, S. L. Hoti, H. F. Khater, and G. Benelli (2016). J. Photochem. Photobiol. B 161, 482–489.

    Article  CAS  PubMed  Google Scholar 

  24. M. Govindarajan, H. F. Khater, C. Panneerselvam, and G. Benelli (2016). Res. Vet. Sci. 107, 95–101.

    Article  CAS  PubMed  Google Scholar 

  25. G. Benelli (2018). Acta Trop. 178, 73–80.

    Article  CAS  PubMed  Google Scholar 

  26. R. Pavela and M. Govindarajan (2017). J. Pest Sci. 90, 369–378.

    Article  Google Scholar 

  27. H. Abdul, R. Sivaraj, and R. Venckatesh (2014). Mater. Lett. 131, 16–18.

    Article  CAS  Google Scholar 

  28. H. Mirzaei and M. Darroudi (2017). Ceram. Int. 43, 907–914.

    Article  CAS  Google Scholar 

  29. M. Darroudi, M. Hakimi, M. Sarani, R. KazemiOskuee, A. K. Zak, and L. Gholami (2013). Ceram. Int. 39, 6917–6921.

    Article  CAS  Google Scholar 

  30. A. K. Zak, W. H. A. Majid, M. R. Mahmoudian, M. Darroudi, and R. Yousefi (2013). Adv. Powder Technol. 24, 618–624.

    Article  CAS  Google Scholar 

  31. S. Gunalan, R. Sivaraj, and V. Rajendran (2012). Proc. Natl. Sci. Mater. 22, 693–700.

    Article  Google Scholar 

  32. S. Stankic, S. Suman, F. Haque, and J. Vidic (2016). J. Nanobiotechnol. 14, 73.

    Article  CAS  Google Scholar 

  33. S. Tabrez, J. Musarrat, and A. A. Al-khedhairy (2016). Colloids Surf. B Biointerfaces 146, 70–83.

    Article  CAS  Google Scholar 

  34. B. Knoll and F. Keilmann (1999). Nature 399, 134–137.

    Article  CAS  Google Scholar 

  35. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney (1996). Langmuir 12, 4329–4335.

    Article  Google Scholar 

  36. N. Padmavathy and R. Vijaya Raghavan (2008). Sci. Technol. Adv. Mater. 9, 7.

    Article  CAS  Google Scholar 

  37. G. Applerot, J. Lellouche, N. Perkas, Y. Nitzan, A. Gedanken, and E. Banin (2012). RSC Adv. 2, 2314–2321.

    Article  CAS  Google Scholar 

  38. J. Fowsiya, G. Madhumitha, N. A. Al-Dhabi, and M. V. Arasu (2016). J. Photochem. Photobiol. 162, 395–401.

    Article  CAS  Google Scholar 

  39. R. Dobrucka and J. Długaszewska (2016). Saudi J. Biol. Sci. 23, 517–523.

    Article  CAS  PubMed  Google Scholar 

  40. L. Stabili, R. Schirosi, M. G. Parisi, S. Piraino, and M. Cammarata (2015). Mar. Drugs 13, 5276–5296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. U. K. Laemmli (1970). Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  42. O. H. Lowry, N. L. Rosebrough, A. L. Farr, and R. J. Randall (1951). J. Biol. Chem. 193, 265–275.

    CAS  PubMed  Google Scholar 

  43. A. Iswarya, B. Vaseeharan, M. Anjugam, B. Ashokkumar, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). Colloids Surf. B Biointerfaces 158, 257–269.

    Article  CAS  PubMed  Google Scholar 

  44. S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, and M. Shobiya (2016). Biomed. Pharmacother. 84, 1213–1222.

    Article  CAS  PubMed  Google Scholar 

  45. D. Das, B. C. Nath, P. Phukon, A. Kalita, and S. K. Dolui (2013). Colloids Surf. B Biointerfaces 111, 556–560.

    Article  CAS  PubMed  Google Scholar 

  46. H. Qi, Q. Zhang, T. Zhao, R. Hu, K. Zhang, and Z. Li (2006). Bioorg. Med. Chem. Lett. 16, 2441–2445.

    Article  CAS  PubMed  Google Scholar 

  47. A. Thirunarayanan, S. Raja, G. Mohanraj, and P. Rajakumar (2014). RSC Adv. 4, 41778–41783.

    Article  CAS  Google Scholar 

  48. M. Anjugam, A. Iswarya, and B. Vaseeharan (2016). Fish Shellfish Immunol. 48, 196–205.

    Article  CAS  PubMed  Google Scholar 

  49. R. Ishwarya, B. Vaseeharan, R. Anuradha, R. Rekha, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. B: Biol. 174, 133–143.

    Article  CAS  Google Scholar 

  50. M. Govindarajan and G. Benelli (2016). J. Parasitol. Res. 115, 4649–4661.

    Article  Google Scholar 

  51. World Health Organization, Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. (WHO/HTM/NTD/DEN/2009.1, 2009).

  52. D. Dhanasekaran and R. Thangaraj (2013). Asian Pac. J. Trop. Dis. 3, 174–179.

    Article  CAS  PubMed Central  Google Scholar 

  53. K. X. Yu, C. L. Wong, R. Ahmad, and I. Jantan (2015). Asian Pac. J. Trop. Dis. 8, 1006–1012.

    Article  Google Scholar 

  54. J. Sánchez-Rodríguez and K. Cruz-Vazquez (2006). Arch. Toxicol. 80, 436–441.

    Article  CAS  PubMed  Google Scholar 

  55. G. I. Uechi, H. Toma, T. Arakawa, and Y. Sato (2005). Toxicology 45, 761–766.

    CAS  Google Scholar 

  56. A. W. Bernheimer and L. S. Avigad (1978). Biochim. Biophys. Acta 541, 96–106.

    Article  CAS  Google Scholar 

  57. M. M. Monastyrnaya, T. A. Zykova, O. V. Apalikova, T. V. Shwets, and E. P. Kozlovskaya (2002). Toxicology 40, 1197–1217.

    CAS  Google Scholar 

  58. S. C. Singh, R. K. Swarnkar, and R. Gopal (2010). Bull. Mater. Sci. 33, 21–26.

    Article  CAS  Google Scholar 

  59. R. Ishwarya, B. Vaseeharan, R. Anuradha, R. Rekha, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2018). J. Photochem. Photobiol. 178, 249–258.

    Article  CAS  Google Scholar 

  60. S. Vijayakumar, G. Vinoj, B. Malaikozhundan, S. Shanthi, and B. Vaseeharan (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 886–891.

    Article  CAS  PubMed  Google Scholar 

  61. M. Abinaya, B. Vaseeharana, M. Divya, A. Sharmili, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2018). J. Trace Elem. Med. Biol. 45, 93–103.

    Article  CAS  PubMed  Google Scholar 

  62. T. Shanmugasundaram and R. Balagurunathan (2016). Artif. Cells Nanomed. Biotechnol.. https://doi.org/10.1080/21691401.2016.1260577.

    Article  PubMed  Google Scholar 

  63. T. W. Stief (2003). Med. Hypotheses 60, 567–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. S. Sureshkumar, J. A. Christopher, and S. Ravikumar (2002). Seaweed Res. Util. 24, 111–115.

    Google Scholar 

  65. S. Thangaraj, S. Bragadeeswaran, K. Suganthi, and N. S. Kumaran (2011). Asian Pac. J. Trop. Biomed. 1, S43–S46.

    Article  Google Scholar 

  66. B. Subramanian, T. Sangappellai, R. C. Rajak, and B. Diraviam (2011). Asian Pac. J. Trop. Biomed. 4, 722–726.

    Article  Google Scholar 

  67. B. Banumathi, B. Vaseeharan, R. Ishwarya, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). Parasitol. Res. 116, 1637–1651.

    Article  PubMed  Google Scholar 

  68. P. K. Stoimenov, R. L. Klinger, G. L. Marchin, and K. J. Klabunde (2002). Langmuir 18, 6679–6686.

    Article  CAS  Google Scholar 

  69. L. L. Zhang, Y. H. Jiang, Y. L. Ding, N. Daskalakis, L. Jeuken, M. Povey, A. J. O. Neill, and D. W. Yorks (2010). J. Nanopart. Res. 12, 1625–1636.

    Article  CAS  Google Scholar 

  70. P. Suganya, B. Vaseeharan, S. Vijayakumar, B. Balan, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, J. M. Khaled, and G. Benelli (2017). J. Photochem. Photobiol. 173, 404–411.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciatively acknowledge the financial support of RUSA-Phase 2.0-F.24-51/2014-U (TN Multi-Gen), Dept. of Edn, Govt of India. MA gratitude the support of DST-INSPIRE fellowship-IF160623, New Delhi, India. The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No. RG-1438-074. The authors thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baskaralingam Vaseeharan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abinaya, M., Rekha, R., Sivakumar, S. et al. Novel and Facile Synthesis of Sea Anemone Adhesive Protein-Coated ZnO Nanoparticles: Antioxidant, Antibiofilm, and Mosquito Larvicidal Activity Against Aedes aegypti. J Clust Sci 30, 1393–1402 (2019). https://doi.org/10.1007/s10876-019-01581-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01581-0

Keywords

Navigation