Skip to main content
Log in

Sonochemical Mediated Synthesis of Iron Oxide (Fe3O4 and Fe2O3) Nanoparticles and their Characterization, Cytotoxicity and Antibacterial Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We synthesized the iron oxide nanoparticles (IONPs) through sonochemical process and analyzed their characteristics and bioactivities. Field emission transmission electron microscopy and particle size analyzer results showed the spherical shaped IONPs with an average size of 8 nm. X-ray diffraction and Fourier transform infrared peaks confirms the formation of IONPs (Fe3O4 and Fe2O3). The IONPs did not induce the cytotoxicity in NIH3T3 but it showed the cytotoxicity in A549 cells with inhibitory concentration (IC50 19.82 µg mL−1). Further, acridine orange/ethidium bromide staining revealed that untreated cells had green nucleus while treated one had many dots of orange color cells as an indication of late apoptotic and necrotic cells. The 2′, 7′-dichlorofluorescein diacetate staining results showed the excessive amounts of reactive oxygen species generation in IONPs treated A549 cells than the untreated cells. Further, the flow cytometer results showed about 2.15% of necrotic cells and 1.68% of apoptotic cells in IONPs treated A549 cells. The IONPs showed antibacterial efficiency on bacterial pathogens with a minimal inhibitory concentration of 0.15 mg mL−1 for Salmonella enterica, Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli. These results are emphasized the bioactive potency of synthesized IONPs for future biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Shah and M. A. Dobrovolskaia (2018). Nanomed. Nanotechnol. 14, 977. https://doi.org/10.1016/j.nano.2018.01.014.

    Article  CAS  Google Scholar 

  2. S. Kummara, M. B. Patil, and T. Uriah (2016). Biomed. Pharmacother. 84, 10. https://doi.org/10.1016/j.biopha.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  3. V. Manikandan, P. Jayanthi, A. Priyadharsan, E. Vijayaprathap, P. M. Anbarasan, and P. Velmurugan (2019). J. Photochem. Photobiol. A Chem. 371, 205. https://doi.org/10.1016/j.jphotochem.2018.11.009.

    Article  CAS  Google Scholar 

  4. S. K. Ray, R. P. Pandey, S. Jeong, and S. W. Lee (2018). J. of Photochem. Photobiol. A Chem. 367, 162. https://doi.org/10.1016/j.jphotochem.2018.08.031.

    Article  CAS  Google Scholar 

  5. M. S. Al-Ruqeishi, T. Mohiuddin, and L. K. Al-Saadi (2016). Arab. J. Chem.. https://doi.org/10.1016/j.arabjc.2016.04.003.

    Article  Google Scholar 

  6. Z. Ansari, A. Saha, S. S. Singha, and K. Sen (2018). J. Photochem. Photobiol. A Chem. 367, 200. https://doi.org/10.1016/j.jphotochem.2018.08.026.

    Article  CAS  Google Scholar 

  7. N. Pokhrel, P. K. Vabbina, and N. Pala (2016). Ultrason Sonochem. 29, 104. https://doi.org/10.1016/j.ultsonch.2015.07.023.

    Article  CAS  PubMed  Google Scholar 

  8. A. Gedanken (2004). Ultrason Sonochem 11, 47. https://doi.org/10.1016/j.ultsonch.2004.01.037.

    Article  CAS  PubMed  Google Scholar 

  9. B. P. Barber and S. J. Putterman (1991). Nature 352, 318. https://doi.org/10.1038/352318a0.

    Article  Google Scholar 

  10. A. S. Arbab, L. A. Bashaw, B. R. Miller, E. K. Jordan, B. K. Lewis, H. Kalish, and J. A. Frank (2003). Radiol. 229, 838. https://doi.org/10.1148/radiol.2293021215.

    Article  Google Scholar 

  11. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson (2003). J. Phys. D 36, R167.

    Article  CAS  Google Scholar 

  12. G. Jagathesan and P. Rajiv (2018). Biocatal. Agric. Biotechnol. 13, 90. https://doi.org/10.1016/j.bcab.2017.11.014.

    Article  Google Scholar 

  13. M. K. Lima-Tenório, E. A. Gómez Pineda, N. M. Ahmad, H. Fessi, and A. Elaissari (2015). Int. J. Pharmaceut. 493, 313. https://doi.org/10.1016/j.ijpharm.2015.07.059.

    Article  CAS  Google Scholar 

  14. R. Abhinayaa, G. Jeevitha, D. Mangalaraj, N. Ponpandian, K. Vidhya, and J. Angayarkanni (2018). Colloids Surf. B. 169, 395. https://doi.org/10.1016/j.colsurfb.2018.05.040.

    Article  CAS  Google Scholar 

  15. M. V. Arularasu, J. Devakumar, and T. V. Rajendran (2018). Polyhedron 156, 279. https://doi.org/10.1016/j.poly.2018.09.036.

    Article  CAS  Google Scholar 

  16. N. Zare, A. Zabardasti, A. Mohammadi, and F. Azarbani (2018). Bioorganic Chem. 80, 334. https://doi.org/10.1016/j.bioorg.2018.07.005.

    Article  CAS  Google Scholar 

  17. A. Hassanjani-Roshan, M. R. Vaezi, A. Shokuhfar, and Z. Rajabali (2011). Particuol. 9, 95. https://doi.org/10.1016/j.partic.2010.05.013.

    Article  CAS  Google Scholar 

  18. K. Saravanakumar, S. Mandava, R. Chellia, E. Jeevithan, R. S. Babu Yelamanchi, D. Mandava, W. Wen-Hui, J. Lee, D.-H. Oh, K. Kathiresan, and M.-H. Wang (2019). Microb. Pathogen. 126, 19. https://doi.org/10.1016/j.micpath.2018.10.011.

    Article  CAS  Google Scholar 

  19. W. Brumfitt, J. M. Hamilton-Miller, and I. Franklin (1990). Microbios 62, 19.

    CAS  PubMed  Google Scholar 

  20. K. Saravanakumar, R. Chelliah, S. Shanmugam, N. B. Varukattu, D.-H. Oh, K. Kathiresan, and M.-H. Wang (2018). J. Photochem. Photobiol. B: Biol. 185, 126. https://doi.org/10.1016/j.jphotobiol.2018.05.032.

    Article  CAS  Google Scholar 

  21. K. Saravanakumar, R. Vivek, N. Sithranga Boopathy, L. Yaqian, K. Kathiresan, and J. Chen (2015). J. Appl. Biomed. 13, 199. https://doi.org/10.1016/j.jab.2015.04.001.

    Article  Google Scholar 

  22. S. Pajaniradje, K. Mohankumar, R. Pamidimukkala, S. Subramanian and R. Rajagopalan (2014). BioMed Res. Int. 11. https://doi.org/10.1155/2014/474953.

  23. G.-Z. Jiang and J.-C. Li (2014). Cell. Mol. Neurobiol. 34, 167. https://doi.org/10.1007/s10571-013-9998-4.

    Article  CAS  PubMed  Google Scholar 

  24. N. Shahabadi, A. Akbari, F. Karampour, and M. Falsafi (2019). J Drug Deliv. Sci. Technol. 49, 113. https://doi.org/10.1016/j.jddst.2018.11.001.

    Article  CAS  Google Scholar 

  25. H. Nosrati, N. Sefidi, A. Sharafi, H. Danafar, and H. K. Manjili (2018). Bioorg Chem. 76, 501. https://doi.org/10.1016/j.bioorg.2017.12.033.

    Article  CAS  PubMed  Google Scholar 

  26. M. P. Morales, S. Veintemillas-Verdaguer, M. I. Montero, C. J. Serna, A. Roig, L. Casas, B. Martínez, and F. Sandiumenge (1999). Chem. Mater. 11, 3058. https://doi.org/10.1021/cm991018f.

    Article  CAS  Google Scholar 

  27. B. Y. Yu and S.-Y. Kwak (2010). J. Mater. Chem. 20, 8320–8328. https://doi.org/10.1039/C0JM01274B.

    Article  CAS  Google Scholar 

  28. R. Yi, G. Ye, D. Pan, F. Wu, M. Wen, and J. Chen (2014). J. Mater. Chem. A. 2, 6840. https://doi.org/10.1039/C3TA15233B.

    Article  CAS  Google Scholar 

  29. M. A. Ghasemzadeh and M. Hossein Abdollahi-Basir (2016). Acta Chim. Slov. 63, 11.

    Google Scholar 

  30. K. Saravanakumar, S. Shanmugam, N. B. Varukattu, D. MubarakAli, K. Kathiresan, and M.-H. Wang (2019). J. Photochem. Photobiol B: Biol. 190, 103. https://doi.org/10.1016/j.jphotobiol.2018.11.017.

    Article  CAS  Google Scholar 

  31. K. Saravanakumar, R. Chelliah, D. MubarakAli, E. Jeevithan, D.-H. Oh, K. Kathiresan, and M.-H. Wang (2018). Int. J. Biol. Macromol. 118, 1542. https://doi.org/10.1016/j.ijbiomac.2018.06.198.

    Article  CAS  PubMed  Google Scholar 

  32. L. H. Abdel-Rahman, A. M. Abu-Dief, R. M. El-Khatib, and S. M. Abdel-Fatah (2016). Bioorg. Chem. 69, 140. https://doi.org/10.1016/j.bioorg.2016.10.009.

    Article  CAS  PubMed  Google Scholar 

  33. G. Feng, J.C. Mareque-Rivas and N.H. Williams (2006). Chem. Commun. 1845. https://doi.org/10.1039/B514328D.

  34. L. M. Gaetke and C. K. Chow (2003). Toxicol. 189, 147. https://doi.org/10.1016/S0300-483X(03)00159-8.

    Article  CAS  Google Scholar 

  35. H. Nosrati, M. Salehiabar, E. Attari, S. Davaran, H. Danafar, and H. K. Manjili (2017). Appl. Organomet. Chem.. https://doi.org/10.1002/aoc.4069.

    Article  Google Scholar 

  36. M. Bilal, T. Rasheed, H. M. N. Iqbal, H. Hu, W. Wang, and X. Zhang (2017). Int. J. Biolog. Macromol. 103, 554. https://doi.org/10.1016/j.ijbiomac.2017.05.071.

    Article  CAS  Google Scholar 

  37. K. Saravanakumar, E. Jeevithan, R. Chelliah, K. Kathiresan, W. Wen-Hui, D.-H. Oh, and M.-H. Wang (2018). Int. J. Biolog. Macromol. 119, 1144. https://doi.org/10.1016/j.ijbiomac.2018.08.017.

    Article  CAS  Google Scholar 

  38. Y. P. Yew, K. Shameli, M. Miyake, N. B. B. Ahmad Khairudin, S. E. B. Mohamad, T. Naiki, and K. X. Lee (2018). Arab. J. Chem.. https://doi.org/10.1016/j.arabjc.2018.04.013.

    Article  Google Scholar 

  39. J. K. Patra, M. S. Ali, I.-G. Oh, and K.-H. Baek (2017). Artif Cells Nanomed Biotechnol. 45, 349. https://doi.org/10.3109/21691401.2016.1153484.

    Article  CAS  PubMed  Google Scholar 

  40. L. Gnanasekaran, R. Hemamalini, R. Saravanan, K. Ravichandran, F. Gracia, S. Agarwal, and V. K. Gupta (2017). J. Photochem. Photobiol. B: Biol. 173, 43. https://doi.org/10.1016/j.jphotobiol.2017.05.027.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017H1D3A1A01052610).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization; KS and MHW. Data curation; KS, NS. Formal analysis; KS. Funding acquisition; MHW. Investigation; NS. Methodology; KS. Project administration; KS and MHW. Supervision; MHW. Validation; KS. Roles/Writing—original draft; NS and KS. Writing—review and editing; KS and MHW.

Corresponding author

Correspondence to Myeong-Hyeon Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, N., Saravanakumar, K. & Wang, MH. Sonochemical Mediated Synthesis of Iron Oxide (Fe3O4 and Fe2O3) Nanoparticles and their Characterization, Cytotoxicity and Antibacterial Properties. J Clust Sci 30, 669–675 (2019). https://doi.org/10.1007/s10876-019-01526-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01526-7

Keywords

Navigation