Skip to main content
Log in

Influence of the Phytosynthesis of Noble Metal Nanoparticles on the Cytotoxic and Genotoxic Effects of Aconitum toxicum Reichenb. Leaves Alcoholic Extract

  • Original Article
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Green nanoparticles are currently thoroughly researched due to the multiple advantages of phytosynthesis, on the one hand, and the potential beneficial or adverse effects, on the other. In this context, our study investigates the potential for the phytosynthesis of gold and silver nanoparticles of the ethanol and methanol extracts from leaves of Aconitum toxicum Rchb., as well as the enhancement of the antioxidant potential and the influence on the cytotoxic and genotoxic effects of the extracts through the action of the synthesized nanoparticles. The nanoparticles obtained were characterized using analytical techniques as UV–Visible spectrometry, X-ray diffraction, X-ray fluorescence, electron microscopy (SEM and STEM). The HPLC analysis of extracts revealed that the methanol extracts contained a higher aconitine level. The alcoholic extracts from leaves of A. toxicum Rchb. exerted mitodepressive effect and the phytomediated synthesis of Ag and Au nanoparticles diminished mitoinhibitory effect of the extracts, dependent on nanoparticles size and type. The mitostimulatory potential of the extracts supplemented with Ag nanoparticles was higher compared with that of the extracts with Au nanoparticles. In general, an influence of the extract composition on both the phytosynthesized nanoparticles and on the evaluated properties was observed, the ethanolic extract leading to gold nanoparticles with smaller dimension, while the silver nanoparticles had similar dimensions for both extracts studied. In the same time, the antioxidant properties of the extracts increased with the phytosynthesis process, a higher increase being observed upon the phytosynthesis of the silver nanoparticles (17% increase for the ethanolic extract and, respectively, 12% for the methanolic extract).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. D. Ukani, N. K. Mehta, and D. D. Nanavati (1996). Anc. Sci. Life 16, (2), 166.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. J. Singhuber, M. Zhu, S. Prinz, and B. Kopp (2009). J. Ethnopharmacol. 126, 18.

    Article  PubMed  Google Scholar 

  3. V. Zanoschi, E. Turenschi, and M. Toma Toxic plants in Romania (In Romanian: Plante toxice din România) (Ceres Publishing House, Bucharest, 1981), p. 84.

    Google Scholar 

  4. Y. Wei, Z. Fang, L. Zheng, and E. P. Tsang (2017). Appl. Surf. Sci. 399, 322.

    Article  CAS  Google Scholar 

  5. G. Manjari, S. Saran, T. Arun, S. P. Devipriya, and A. V. B. Rao (2017). J. Cluster Sci. 28, 2041.

    Article  CAS  Google Scholar 

  6. J. M. Khaled, N. S. Alharbi, S. Kadaikunnan, A. S. Alobaidi, M. N. Al-Anbr, K. Gopinath, A. Aurmugam, M. Govindarajan, and G. Benelli (2017). J. Cluster Sci. 28, 3009.

    Article  CAS  Google Scholar 

  7. K. J. Dietz and S. Herth (2011). Trends Plant Sci. 16, 582.

    Article  CAS  PubMed  Google Scholar 

  8. N. A. Sutan, D. S. Manolescu, I. Fierascu, A. M. Neblea, C. Sutan, C. Ducu, L. C. Soare, D. Negrea, S. M. Avramescu, and R. C. Fierascu (2018). Mater. Sci. Eng. C 93, 746.

    Article  CAS  Google Scholar 

  9. I. Fierascu, M. I. Georgiev, A. Ortan, R. C. Fierascu, S. M. Avramescu, D. Ionescu, A. Sutan, A. Brinzan, and L. M. Ditu (2017). Sci. Rep. 7, 12428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. V. V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina (2014). Acta Naturae 6, 35.

    Article  CAS  Google Scholar 

  11. A. Ortan, I. Fierascu, C. Ungureanu, R. C. Fierascu, S. M. Avramescu, O. Dumitrescu, and C. E. Dinu-Pirvu (2015). Appl. Surf. Sci. 358, 540.

    Article  CAS  Google Scholar 

  12. N. A. Sutan, I. Fierascu, R. C. Fierascu, D. S. Manolescu, and L. C. Soare (2016). Ind. Crops Prod. 83, 379.

    Article  CAS  Google Scholar 

  13. S.B. Tedesco, H.D. Laughinghouse IV, in Environmental Contamination, ed. By J.K. Srivastava (InTech, Rijeka, 2012), p. 137.

  14. Q. Hoda, S. Bose, and S. P. Sinha (1991). Cytologia 56, 389.

    Article  CAS  Google Scholar 

  15. R. Desai, V. Mankad, S. K. Gupta, and P. K. Jha (2012). Nanosci. Nanotechnol. Lett. 4, 30.

    Article  CAS  Google Scholar 

  16. S. Agnihotri, S. Mukherji, and S. Mukherji (2014). RSC Adv. 4, 3974.

    Article  CAS  Google Scholar 

  17. A. Zuber, M. Purdey, E. Schartner, C. Forbes, B. van der Hoek, D. Giles, A. Abell, T. Monro, and H. Ebendorff-Heidepriem (2016). Sens. Actuators B Chem. 227, 117.

    Article  CAS  Google Scholar 

  18. S. Barua, S. Thakur, L. Aidew, A. K. Buragohain, P. Chattopadhyay, and N. Karak (2014). RSC Adv. 4, 9777.

    Article  CAS  Google Scholar 

  19. S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, 17.

    Article  CAS  PubMed  Google Scholar 

  20. T. P. Yin, L. Cai, Y. Xing, J. Yu, X. J. Li, R. F. Mei, and Z. T. Ding (2016). J. Asian Nat. Prod. Res. 18, 603.

    Article  CAS  PubMed  Google Scholar 

  21. E. Bonciu, P. Firbas, C. S. Fontanetti, J. Wusheng, M. C. Karaismailoǧlu, D. Liu, F. Menicucci, D. S. Pesnya, A. Popescu, A. V. Romanovsky, S. Schiff, J. Ślusarczyk, C. P. de Souza, A. Srivastava, A. Sutan, and A. Papini (2018). Caryologia 71, 191.

    Article  Google Scholar 

  22. T. Gul, F. Kaymak, and F. D. G. Muranli (2006). Caryologia 59, 241.

    Article  Google Scholar 

  23. Y. Eren and A. Özata (2014). Rev. Bras. Farmacogn. 24, 51.

    Article  Google Scholar 

  24. D. Singh and B. K. Roy (2017). Acta Physiol. Plant. 39, 92.

    Article  CAS  Google Scholar 

  25. T. C. C. Fernandes, D. E. C. Mazzeo, and M. A. Marin-Morales (2007). Pestic. Biochem. Physiol. 88, 252.

    Article  CAS  Google Scholar 

  26. K. Linnainmaa, T. Meretoja, M. Sorsa, and H. Vainio (1978). Mutat. Res. 58, 277.

    Article  CAS  PubMed  Google Scholar 

  27. V. Prajitha and J. E. Thoppil (2017). Cytotechnology 69, 123.

    Article  CAS  PubMed  Google Scholar 

  28. G. Lubini, J. M. Fachinetto, H. D. Laughinghouse IV, J. T. Paranhos, A. C. F. Silva, and S. B. Tedesco (2008). Biologia 63, 647.

    Article  Google Scholar 

  29. R. Chakraborty, A. K. Mukherjee, and A. Mukherjee (2009). Environ. Monit. Assess. 153, 351.

    Article  CAS  PubMed  Google Scholar 

  30. M.M. Alam, M. Naeem, M.M.A. Khan, M. Uddin, in Catharanthus roseus ed. By M. Naeem, T. Aftab, M. Khan (Springer, Cham, 2017), p. 277.

  31. K. Patau, R.P. Patil, Chromosoma Bd. 4, S.470 (1951).

  32. A. S. Haliem (1990). Egypt. J. Bot. 33, 93.

    CAS  Google Scholar 

  33. L. F. Andrade-Vieira, M. J. Palmieri, and L. C. Davide (2017). Environ. Monit. Assess. 189, 489.

    Article  CAS  PubMed  Google Scholar 

  34. A. A. El-Ghamery, M. A. El-Kholy, and M. A. Abou El-Yousser (2003). Mutat. Res. Genet. Toxicol. Environ. Mutagen. 537, 29.

    Article  CAS  Google Scholar 

  35. R. Liman, D. Akyil, Y. Eren, and M. Konuk (2010). Chemosphere 80, 1056.

    Article  CAS  PubMed  Google Scholar 

  36. D. M. Leme and M. A. Marin-Morales (2009). Mutat. Res. 682, 71.

    Article  CAS  PubMed  Google Scholar 

  37. B. Ateeq, M. Abul Farah, M. Niamat Ali, and W. Ahmad (2002). Mutat. Res. 514, 105.

    Article  CAS  PubMed  Google Scholar 

  38. D. D. Borooah (2011). Int. J. Plant Animal Environ. Sci. 1, 185.

    Google Scholar 

  39. P. Koedrith, R. Boonprasert, J. Y. Kwon, I. S. Kim, and Y. R. Seo (2014). Mol. Cell. Toxicol. 10, 107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NAS gratefully acknowledge the support obtained through the Project CIPCS_2017, Contract No. 1540/08.02.2018 from the Internal Competition of Scientific Research Projects, project financed from the University of Piteşti. RCF, CS, CD, LCS and IF gratefully acknowledge the support obtained through the Project BIOHORTINOV, Grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI – UEFISCDI, Complex Project PN-III-P1-1.2-PCCDI2017-0332; Contract: 6PCCDI/2018, within PNCDI III. SMA gratefully acknowledge the support obtained through the Project SusMAPWaste, SMIS 104323, Contract No. 89/09.09.2016, from the Operational Program Competitiveness 2014–2020, project cofinanced from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irina Fierascu or Radu Claudiu Fierascu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutan, N.A., Vilcoci, D.S., Fierascu, I. et al. Influence of the Phytosynthesis of Noble Metal Nanoparticles on the Cytotoxic and Genotoxic Effects of Aconitum toxicum Reichenb. Leaves Alcoholic Extract. J Clust Sci 30, 647–660 (2019). https://doi.org/10.1007/s10876-019-01524-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01524-9

Keywords

Navigation