Skip to main content
Log in

Five Transition-Metal-Substituted Polyoxometalates: Syntheses, Structures and Electrochemical Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A series of transition metal, such as Ni/Mn/Zn, substituted sandwich-type polyoxometalates, H9Na(enMe)3[Ni4(H2O)2(PW9O34)2]·31H2O (1), H8Na2[Ni4(H2O)2(PW9O34)2]·34H2O (2), H8Na2[Mn4(H2O)2(PW9O34)2]·29H2O (3), H4Na6[Mn4(H2O)2(PW9O34)2]·41H2O (4), H5Na7[Zn4(H2O)2(GeW9O34)2]·25H2O (5) have been synthesized under mild hydrothermal conditions and characterized by IR spectra, thermogravimetric analysis, elemental analysis, single-crystal X-ray diffraction and powder X-ray diffraction, respectively. The structure analysis reveals that 15 contain a similar sandwich-type polyoxoanion unit [M4(H2O)2(XW9O34)2]10−/12− (M = Ni2+/Mn2+/Zn2+; X = PV/GeIV), which are further linked by Na+ cations to form 1- to 3-D structures, respectively. Furthermore, the electrochemical properties of 1, 4 and 5 have been studied in 0.5 mol L−1 Na2SO4/H2SO4 supporting electrolyte, and show that 1, 4 and 5 possess comparatively apparent catalytic activities toward the NaNO2 or H2O2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Suzuki, F. Tang, Y. Kikukawa, K. Yamaguchi, and N. Mizuno (2014). Angew. Chem. Int. Ed. 53, 5356.

    Article  CAS  Google Scholar 

  2. S. S. Wang and G. Y. Yang (2015). Chem. Rev. 115, 4893.

    Article  CAS  PubMed  Google Scholar 

  3. X. Yi, N. V. Izarova, M. Stuckart, D. Guerin, L. Thomas, S. Lenfant, D. Vuillaume, J. van Leusen, T. Duchon, S. Nemsak, S. D. M. Bourone, S. Schmitz, and P. Kogerler (2017). J. Am. Chem. Soc. 139, 14501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. G. Jia, P. T. Ma, P. P. Zhang, D. D. Zhang, C. Zhang, J. Y. Niu, and J. P. Wang (2018). Dalton Trans. 47, 6288.

    Article  CAS  PubMed  Google Scholar 

  5. T. Quanten, T. De Mayaer, P. Shestakova, and T. N. Parac-Vogt (2018). Front. Chem. 6, 1.

    Article  CAS  Google Scholar 

  6. M. Pan, Y. X. Zhu, K. Wu, L. Chen, Y. J. Hou, S. Y. Yin, H. P. Wang, Y. N. Fan, and C. Y. Su (2017). Angew. Chem. Int. Ed. 56, 14582.

    Article  CAS  Google Scholar 

  7. A. Haider, M. Ibrahim, B. S. Bassil, A. M. Carey, A. N. Viet, X. Xing, W. W. Ayass, J. F. Minambres, R. Liu, G. Zhang, B. Keita, V. Mereacre, A. K. Powell, K. Balinski, A. T. N’Diaye, K. Kupper, H. Y. Chen, U. Stimming, and U. Kortz (2016). Inorg. Chem. 55, 2755.

    Article  CAS  PubMed  Google Scholar 

  8. C. S. Ayingone Mezui, P. de Oliveira, A. L. Teillout, J. Marrot, P. Berthet, M. Lebrini, and I. M. Mbomekalle (2017). Inorg. Chem. 56, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. J. Berzerius (1826). Pogg. Ann. 6, 369.

    Google Scholar 

  10. T. J. R. Weakley, H. T. Evans, J. S. Showell, G. F. Tourne, and C. M. Tourne (1973). J. Chem. Soc. Chem. Commun. 139.

  11. J. W. Zhao, Y. Z. Li, L. J. Chen, and G. Y. Yang (2016). Chem. Commun. 52, 4418.

    Article  CAS  Google Scholar 

  12. Z. Zhang, J. W. Zhao, and G. Y. Yang (2017). Eur. J. Inorg. Chem. 26, 3244.

    Article  CAS  Google Scholar 

  13. Z. J. Wang, L. C. Zhang, Z. M. Zhu, W. L. Chen, W. S. You, and E. B. Wang (2012). Inorg. Chem. Commun. 17, 151.

    Article  CAS  Google Scholar 

  14. D. Guo, S. T. Z. Liu, W. You, and L. Zhang (2013). J. Clust. Sci. 24, 549.

    Article  CAS  Google Scholar 

  15. F. Yu, Y. X. Long, Y. P. Ren, X. J. Kong, L. S. Long, R. B. Huang, and L. S. Zheng (2010). Dalton Trans. 39, 7588.

    Article  CAS  PubMed  Google Scholar 

  16. S. H. Wasfi, A. L. Rheingold, G. F. Kokoszka, and A. S. Goldstein (1987). Inorg. Chem. 26, 2934.

    Article  CAS  Google Scholar 

  17. C. M. Tourné, G. F. Tourné, and F. Zonnevijlle (1991). J. Chem. Soc. Dalton Trans. 143.

  18. W. Chen, Y. Li, Y. Wang, and E. Wang (2007). Eur. J. Inorg. Chem. 2216.

  19. I. M. Mbomekalle, B. Keita, M. Nierlich, U. Kortz, P. Berthet, and L. Nadjo (2003). Inorg. Chem. 42, 5143.

    Article  CAS  PubMed  Google Scholar 

  20. C. Ritchie, F. Li, C. P. Pradeep, D.-L. Long, L. Xu, and L. Cronin (2009). Dalton Trans. 148, 6483.

    Article  CAS  Google Scholar 

  21. H. Liu, J. Peng, J. Sha, L. Wang, L. Han, D. Chen, and Y. Shen (2009). J. Mol. Struct. 923, 153.

    Article  CAS  Google Scholar 

  22. L. Chen, D. Shi, J. Zhao, Y. Wang, P. Ma, and J. Niu (2011). Inorg. Chem. Commun. 14, 1052.

    Article  CAS  Google Scholar 

  23. J. W. Zhao, B. Li, S. T. Zheng, and G. Y. Yang (2007). Cryst. Growth Des. 7, 2658.

    Article  CAS  Google Scholar 

  24. H. Xue, Z. Zhang, B. F. Yang, H. S. Liu, and G. Y. Yang (2016). J. Clust. Sci. 27, 1439.

    Article  CAS  Google Scholar 

  25. Y. Y. Li, J. W. Zhao, Q. Wei, B. F. Yang, and G. Y. Yang (2014). J. Clust. Sci. 25, 549.

    Article  CAS  Google Scholar 

  26. Y. Y. Li, J. W. Zhao, B. F. Yang, H. He, and G. Y. Yang (2014). J. Clust. Sci. 25, 949.

    Article  CAS  Google Scholar 

  27. H. Y. Zhao, J. W. Zhao, B. F. Yang, H. He, and G. Y. Yang (2013). Cryst. Growth Des. 13, 5169.

    Article  CAS  Google Scholar 

  28. Z. Zhang, Y. L. Wang, and G. Y. Yang (2017). Inorg. Chem. Commun. 85, 32.

    Article  CAS  Google Scholar 

  29. Z. H. Ni, Z. Zhang, and G. Y. Yang (2018). J. Clust. Sci. 29, 1185.

    Article  CAS  Google Scholar 

  30. T. Ueda (2018). ChemElectroChem 5, 823.

    Article  CAS  Google Scholar 

  31. H. L. Li, Y. L. Wang, Z. Zhang, B. F. Yang, and G. Y. Yang (2018). Dalton Trans. 47, 14017.

    Article  CAS  PubMed  Google Scholar 

  32. A. P. Ginsberg (1990). Inorg. Synth. 27, 85.

    Google Scholar 

  33. M. Bösing, H. Loose, H. Pohlmann, and B. Krebs (1997). Chem. Eur. J. 3, 1232.

    Article  Google Scholar 

  34. N. Haraguchi, Y. Okaue, T. Isobe, and Y. Matsuda (1994). Inorg. Chem. 33, 1015.

    Article  CAS  Google Scholar 

  35. M. S. Mercè, R. S. Winter, C. Lydon, J. M. Cameron, D. L. Long, and L. Cronin (2016). Chem. Commun. 52, 919.

    Article  CAS  Google Scholar 

  36. G. M. Sheldrick SHELXL97, Program for Crystal Structure Solution (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  37. A. L. Spek (2015). Acta Crystallogr. Sect. C Struct. Chem. 71, 9.

    Article  CAS  Google Scholar 

  38. L. J. Xu, W. Z. Zhou, L. Y. Zhang, B. Li, H. Y. Zang, Y. H. Wang, and Y. G. Li (2015). CrystEngComm 17, 3708.

    Article  CAS  Google Scholar 

  39. S. T. Zheng, D. Q. Yuan, H. P. Jia, J. Zhang, and G. Y. Yang (2007). Chem. Commun. 18, 1858.

    Article  CAS  Google Scholar 

  40. I. D. Brown and D. Altermatt (1985). Acta Crystallogr. B 41, 244.

    Article  Google Scholar 

  41. J. C. Liu, J. Luo, Q. Han, J. Cao, L. J. Chen, Y. Song, and J. W. Zhao (2017). J. Mater. Chem. C 5, 2043.

    Article  CAS  Google Scholar 

  42. X. L. Wang, J. J. Sun, H. Y. Lin, Z. H. Chang, G. C. Liu, and X. Wang (2017). CrystEngComm 19, 3167.

    Article  Google Scholar 

  43. Y. Y. Zheng, Ru Wen, X. J. Kong, L. S. Long, R. B. Huang, and L. S. Zheng (2012). Dalton Trans. 41, 9871.

    Article  CAS  PubMed  Google Scholar 

  44. L. Y. Guo, S. Y. Zeng, Z. Jaglicic, Q. D. Hu, S. X. Wang, Z. Wang, and D. Sun (2016). Inorg. Chem. 55, 9006.

    Article  CAS  PubMed  Google Scholar 

  45. S. G. Mitchell, T. Boyd, H. N. Miras, D. L. Long, and L. Cronin (2011). Inorg. Chem. 50, 136.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC (Nos. 21571016, 21831001 and 91122028), the NSFC for Distinguished Young Scholars (No. 20725101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Yu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, ZH., Zhang, Z. & Yang, GY. Five Transition-Metal-Substituted Polyoxometalates: Syntheses, Structures and Electrochemical Properties. J Clust Sci 30, 637–645 (2019). https://doi.org/10.1007/s10876-019-01523-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01523-w

Keywords

Navigation