Skip to main content
Log in

Dinuclear Metal-Mediated Guanine–Uracil Base Pairs: Theoretical Studies of GUM22+ (M = Cu, Ag, and Au) Ions

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Dinuclear metal-mediated hetero base pairs with the d10–d10 closed-shell interactions have significant stability. It is interesting to identify whether coinage metal-mediated Wobble base pairs are also stable. Geometric and electronic structures of the lowest-lying isomers of GUM22+ (G = guanine, U = uracil, M = Cu, Ag, and Au) cluster ions were investigated with density functional theory. In the lowest-lying isomers of these dinuclear metal-mediated base pairs, the 2-oxo-4-hydroxy-trans-N1H isomer of uracil is derived from the canonical tautomer of uracil by the hydrogen atom transfer. M22+ cations remain as an unbroken unit and interact with the G···U ligand through two sets of closely linear N···M···O units, while the reciprocal hydrogen bonds between the Wobble base pair (G–U) are entirely substituted by the M–N or M–O interactions in these complexes. The atoms in molecules and EDA–NOCV calculations really reveal that the σ interactions in GUM22+ cations are the paramount term of ΔEOrb. The obtained instantaneous interaction energies ΔEint and bond dissociation energies of the metal–ligand interactions give the trend of the bond strength as Cu > Au > Ag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. H. Clever, C. Kaul, and T. Carell (2007). Angew. Chem. Int. Ed. 46, 6226–6236.

    Article  CAS  Google Scholar 

  2. K. Tanaka and M. Shionoya (2007). Coord. Chem. Rev. 251, 2732–2742.

    Article  CAS  Google Scholar 

  3. W. He, R. M. Franzini, and C. Achim (2008). Inorg. Chem. 55, 545–612.

    Google Scholar 

  4. J. Müller (2008). Eur. J. Inorg. Chem. 2008, 3749–3763.

    Article  CAS  Google Scholar 

  5. R. Mas-Ballesté, O. Castillo, P. J. Sanz Miguel, D. Olea, J. Gómez-Herrero, and F. Zamora (2009). Eur. J. Inorg. Chem. 2009, 2885–2896.

    Article  CAS  Google Scholar 

  6. J. Liu, Z. Cao, and Y. Lu (2009). Chem. Rev. 109, 1948–1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. H. Clever and M. Shionoya (2010). Coord. Chem. Rev. 254, 2391–2402.

    Article  CAS  Google Scholar 

  8. A. Ono, H. Torigoe, Y. Tanaka, and I. Okamoto (2011). Chem. Soc. Rev. 40, 5855–5866.

    Article  CAS  PubMed  Google Scholar 

  9. Y. Takezawa and M. Shionoya (2012). Acc. Chem. Res. 45, 2066–2076.

    Article  CAS  PubMed  Google Scholar 

  10. S. Mandal, M. Hebenbrock, and J. Müller (2016). Angew. Chem. Int. Ed. 55, 15520–15523.

    Article  CAS  Google Scholar 

  11. S. Mandal and J. Müller (2017). Curr. Opin. Chem. Biol. 37, 71–79.

    Article  CAS  PubMed  Google Scholar 

  12. S. Taherpour, O. Golubev, and T. Lönnberg (2016). Inorg. Chim. Acta. 452, 43–49.

    Article  CAS  Google Scholar 

  13. A. Ono and H. Togashi (2004). Angew. Chem. Int. Ed. 43, 4300–4302.

    Article  CAS  Google Scholar 

  14. T. Ehrenschwender, W. Schmucker, C. Wellner, T. Augenstein, P. Carl, J. Harmer, F. Breher, and H. A. Wagenknecht (2013). Chem. Eur. J. 19, 12547–12552.

    Article  CAS  PubMed  Google Scholar 

  15. E. Toomey, J. Xu, S. Vecchioni, L. Rothschild, S. Wind, and G. E. Fernandes (2016). J. Phys. Chem. C 120, 7804–7809.

    Article  CAS  Google Scholar 

  16. K. S. Park, C. Jung, and H. G. Park (2010). Angew. Chem. Int. Ed. 49, 9757–9760.

    Article  CAS  Google Scholar 

  17. T. Carell (2011). Nature 469, 45–46.

    Article  CAS  PubMed  Google Scholar 

  18. J. Liu and Y. Lu (2007). Angew. Chem. 119, 7731–7734.

    Article  Google Scholar 

  19. X. Liu, C.-H. Lu, and I. Willner (2014). Acc. Chem. Res. 47, 1673–1680.

    Article  CAS  PubMed  Google Scholar 

  20. A. Rioz-Martínez and G. Roelfes (2015). Curr. Opin. Chem. Biol. 25, 80–87.

    Article  CAS  PubMed  Google Scholar 

  21. D. A. Megger, C. F. Guerra, J. Hoffmann, B. Brutschy, F. M. Bickelhaupt, and J. Müller (2011). Chem. Eur. J. 17, 6533–6544.

    Article  CAS  PubMed  Google Scholar 

  22. M. Su, M. Tomás-Gamasa, and T. Carell (2015). Chem. Sci. 6, 632–638.

    Article  CAS  PubMed  Google Scholar 

  23. H. Mei, S. A. Ingale, and F. Seela (2014). Chem. Eur. J. 20, 16248–16257.

    Article  CAS  PubMed  Google Scholar 

  24. H. Mei, H. Yang, I. Röhl, and F. Seela (2014). ChemPlusChem 79, 914–918.

    Article  CAS  Google Scholar 

  25. H. Yang, H. Mei, and F. Seela (2015). Chem. Eur. J. 21, 10207–10219.

    Article  CAS  PubMed  Google Scholar 

  26. I. Sinha, C. F. Guerra, and J. Müller (2015). Angew. Chem. Int. Ed. 54, 3603–3606.

    Article  CAS  Google Scholar 

  27. S. Mandal, A. Hepp, and J. Müller (2015). Dalton Trans. 44, 3540–3543.

    Article  CAS  PubMed  Google Scholar 

  28. S. Mandal, M. Hebenbrock, and J. Müller (2018). Inorg. Chim. Acta. 472, 229–233.

    Article  CAS  Google Scholar 

  29. J. Kondo, T. Sugawara, H. Saneyoshi, and A. Ono (2017). Chem. Commun. 53, 11747–11750.

    Article  CAS  Google Scholar 

  30. S. Mandal, M. Hebenbrock, and J. Müller (2017). Chem. Eur. J. 23, 5962–5965.

    Article  CAS  PubMed  Google Scholar 

  31. J. M. Méndez-Arriaga, C. R. Maldonado, J. A. Dobado, and M. A. Galindo (2018). Chem. Eur. J. 24, 1–8.

    Article  CAS  Google Scholar 

  32. J. V. Burda, J. Špřoner, J. Leszczynski, and P. Hobza (1997). J. Phys. Chem. B 101, 9670–9677.

    Article  CAS  Google Scholar 

  33. E. S. Kryachko and F. Remacle (2005). J. Phys. Chem. B 109, 22746–22757.

    Article  CAS  PubMed  Google Scholar 

  34. A. Kumar, P. C. Mishra, and S. Suhai (2006). J. Phys. Chem. A 110, 7719–7727.

    Article  CAS  PubMed  Google Scholar 

  35. P. J. Mohan, A. Datta, S. S. Mallajosyula, and S. K. Pati (2006). J. Phys. Chem. B 110, 18661–18664.

    Article  CAS  PubMed  Google Scholar 

  36. N. Vyas and A. K. Ojha (2012). Comput. Theor. Chem. 984, 93–101.

    Article  CAS  Google Scholar 

  37. E. S. Kryachko and F. Remacle (2005). Nano Lett. 5, 735–739.

    Article  CAS  PubMed  Google Scholar 

  38. G.-J. Cao, H.-G. Xu, R.-Z. Li, and W. Zheng (2012). J. Chem. Phys. 136, 014305.

    Article  CAS  PubMed  Google Scholar 

  39. G.-J. Cao, H.-G. Xu, W.-J. Zheng, and J. Li (2014). Phys. Chem. Chem. Phys. 16, 2835–2928.

    Google Scholar 

  40. P. Wang, H.-G. Xu, G.-J. Cao, W.-J. Zhang, X.-L. Xu, and W.-J. Zheng (2017). J. Phys. Chem. A 121, 8973–8981.

    Article  CAS  PubMed  Google Scholar 

  41. J. Valdespino-Saenz and A. Martínez (2008). J. Phys. Chem. A 112, 2408–2414.

    Article  CAS  PubMed  Google Scholar 

  42. G.-J. Cao, H.-G. Xu, X.-L. Xu, P. Wang, and W.-J. Zheng (2016). Int. J. Mass Spectrom. 407, 118–125.

    Article  CAS  Google Scholar 

  43. M. V. Vázquez and A. Martínez (2008). J. Phys. Chem. A 112, 1033–1039.

    Article  CAS  PubMed  Google Scholar 

  44. N. Russo, M. Toscano, and A. Grand (2003). J. Mass Spectrom. 38, 265–270.

    Article  CAS  PubMed  Google Scholar 

  45. L. A. Espinosa Leal and O. Lopez-Acevedo (2015). Nanotechnol. Rev. 4, 173–191.

    Article  CAS  Google Scholar 

  46. S. J. Stohs and D. Bagchi (1995). Free Radic. Biol. Med. 18, 321–336.

    Article  CAS  PubMed  Google Scholar 

  47. K. Yamamoto and S. Kawanishi (1989). J. Biol. Chem. 264, 15435–15440.

    CAS  PubMed  Google Scholar 

  48. J. L. Sagripanti and K. H. Kraeme (1989). J. Biol. Chem. 264, 1729–1734.

    CAS  PubMed  Google Scholar 

  49. V. I. Danilov, V. M. Anisimov, N. Kurita, and D. Hovorun (2005). Chem. Phys. Lett. 412, 285–293.

    Article  CAS  Google Scholar 

  50. J. Šponer, M. Sabat, J. V. Burda, J. Leszczynski, and P. Hobza (1999). J. Phys. Chem. B 103, 2528–2534.

    Article  Google Scholar 

  51. J. M. Weber, J. A. Kelley, W. H. Robertson, and M. A. Johnson (2001). J. Chem. Phys. 114, 2698–2706.

    Article  CAS  Google Scholar 

  52. M. D. Topal and J. R. Fresco (1976). Nature 263, 285–289.

    Article  CAS  PubMed  Google Scholar 

  53. J. Florián and J. Leszczyński (1996). J. Am. Chem. Soc. 118, 3010–3017.

    Article  Google Scholar 

  54. G.-J. Cao (2017). Sci. Rep. 7, 14896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09, Revision C. 01 (Gaussian, Inc., Wallingford, 2010).

    Google Scholar 

  56. A. D. Becke (1993). J. Chem. Phys. 98, 5648–5652.

    Article  CAS  Google Scholar 

  57. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785–789.

    Article  CAS  Google Scholar 

  58. D. Figgen, G. Rauhut, M. Dolg, and H. Stoll (2005). Chem. Phys. 311, 227–244.

    Article  CAS  Google Scholar 

  59. K. A. Peterson and C. Puzzarini (2005). Theor. Chem. Acc. 114, 283–296.

    Article  CAS  Google Scholar 

  60. J. P. Foster and F. Weinhold (1980). J. Am. Chem. Soc. 102, 7211–7218.

    Article  CAS  Google Scholar 

  61. R. F. W. Bader (1991). Chem. Rev. 91, 893–928.

    Article  CAS  Google Scholar 

  62. R. F. W. Bader (1998). J. Phys. Chem. A 102, 7314–7323.

    Article  CAS  Google Scholar 

  63. R. F. W. Bader, et al. Atoms in Molecules (Wiley, New York, 1990).

    Google Scholar 

  64. T. Lu and F. Chen (2012). J. Comput. Chem. 33, 580–592.

    Article  CAS  PubMed  Google Scholar 

  65. A. D. Becke (1988). Phys. Rev. A 38, 3098–3100.

    Article  CAS  Google Scholar 

  66. J. P. Perdew and W. Yue (1986). Phys. Rev. B 33, 8800–8802.

    Article  CAS  Google Scholar 

  67. C. F. Guerra, J. G. Snijders, G. T. Velde, and E. J. Baerends (1998). Theor. Chem. Acc. 99, 391–403.

    CAS  Google Scholar 

  68. G. T. Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. V. Gisbergen, J. G. Snijders, and T. Ziegler (2001). J. Comput. Chem. 22, 931–967.

    Article  Google Scholar 

  69. See http://www.scm.com for ADF2013.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Accessed 01 July 2017.

  70. E. V. Lenthe, A. Ehlers, and E. J. Baerends (1999). J. Chem. Phys. 110, 8943–8953.

    Article  Google Scholar 

  71. E. V. Lenthe and E. Jan Baerends (2000). J. Chem. Phys. 112, 8279–8292.

    Article  Google Scholar 

  72. G.-J. Cao (2018). J. Chem. Phys. 149, 144308.

    Article  CAS  PubMed  Google Scholar 

  73. G.-J. Cao and W.-J. Zheng (2013). Acta Phys. Chim Sin. 29, 2135–2147.

    CAS  Google Scholar 

  74. P. Pyykkö (2004). Angew. Chem. Int. Ed. 43, 4412–4456.

    Article  CAS  Google Scholar 

  75. P. Pyykkö (2005). Inorg. Chim. Acta. 358, 4113–4130.

    Article  CAS  Google Scholar 

  76. P. Pyykko (2008). Chem. Soc. Rev. 37, 1967–1997.

    Article  CAS  PubMed  Google Scholar 

  77. P. Pyykkö (1988). Chem. Rev. 88, 563–594.

    Article  Google Scholar 

  78. P. Pyykkö (1979). Acc. Chem. Res. 12, 276–281.

    Article  Google Scholar 

  79. P. Pyykkö (2002). Angew. Chem. Int. Ed. 41, 3573–3578.

    Article  Google Scholar 

  80. I. Mayer (1984). Int. J. Quantum Chem. 26, 151–154.

    Article  CAS  Google Scholar 

  81. I. Mayer (1985). Theor. Chim. Acta 67, 315–322.

    Article  CAS  Google Scholar 

  82. I. Mayer (1983). Chem. Phys. Lett. 97, 270–274.

    Article  CAS  Google Scholar 

  83. A. J. Bridgeman, G. Cavigliasso, L. R. Ireland, and J. Rothery (2001). J. Chem. Soc. Dalton Trans. (14), 2095–2108. https://doi.org/10.1039/B102094N.

  84. P. L. Ayers, R. J. Boyd, P. Bultinck, M. Caffarel, R. Carbó-Dorca, M. Causá, J. Cioslowski, J. Contreras-Garcia, D. L. Cooper, P. Coppens, C. Gatti, S. Grabowsky, P. Lazzeretti, P. Macchi, Á. Martín Pendás, P. L. A. Popelier, K. Ruedenberg, H. Rzepa, A. Savin, A. Sax, W. H. E. Schwarz, S. Shahbazian, B. Silvi, M. Solà, and V. Tsirelson (2015). Comput. Theor. Chem. 1053, 2–16.

    Article  CAS  Google Scholar 

  85. G.-J. Cao, W. H. Eugen Schwar, and J. Li (2015). Inorg. Chem. 54, 3695–3701.

    Article  CAS  PubMed  Google Scholar 

  86. P. Jerabek, H. W. Roesky, G. Bertrand, and G. Frenking (2014). J. Am. Chem. Soc. 136, 17123–17135.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant No. 21501114), the Natural Science Foundation of Shanxi Province (Grant No. 2015021048), and the Open Fund of Beijing National Laboratory for Molecular Sciences (Grant No. BNLMS20150051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Jin Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2090 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, GJ., Hou, HL. Dinuclear Metal-Mediated Guanine–Uracil Base Pairs: Theoretical Studies of GUM22+ (M = Cu, Ag, and Au) Ions. J Clust Sci 30, 439–448 (2019). https://doi.org/10.1007/s10876-019-01503-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01503-0

Keywords

Navigation