Skip to main content
Log in

Uncapped Silver Nanoclusters as Potential Catalyst for Enhanced Direct-Electrochemical Oxidation of 4-Nitrophenol

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Herein silver nanoclusters (Ag NCS) are synthesized by one-step, and facile chemical reduction strategy in water medium at room temperature without employing any external stabilizing agents. Silver nanoclusters based film was prepared on a glassy carbon electrode surface (GCE Ag NCS) as the working electrode for the direct electrochemical oxidation of 4-nitrophenol for the first time. It is found that Ag nanoclusters exhibit an admirable electrocatalytic activity for the direct-oxidation of 4-nitrophenol by offering huge accessible electrochemical active surface area and a facile environment for the electron transfer from analyte to the electrode in the absence of any other mediator or enzymes on the electrode surface. Silver nanoclusters based electrode demonstrates significantly improved anodic current by ~ 12 times and less positive anodic peak potential shift by ~ 0.27 V in comparison to bare GCE, revealing superior performance of present electrode materials for direct-oxidation of 4-nitrophenol. The GCE Ag NCS also exhibits high mass activity of 64.3 A g−1 and diffusion co-efficient of 0.2 × 10−3 cm2 s−1. The catalyst developed in this investigation also possesses good durability under 1.0 M KOH, demonstrating that the Ag nanoclusters constructed electrodes have promising practical environmental applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Tian, P. Gao, Y. Nie, C. Yang, Z. Zhou, Y. Li, and Y. Wang (2017). Chem. Commun. 53, 6589.

    Article  CAS  Google Scholar 

  2. L. Xiao, R. Xu, and F. Wang (2018). Talanta 179, 448.

    Article  CAS  PubMed  Google Scholar 

  3. K. Yan, Y. Yang, Y. Zhu, and J. Zhang (2014). Anal. Chem. 89, 8599.

    Article  CAS  Google Scholar 

  4. A. Arvinte, M. Mahosenaho, M. Pinteala, A.-M. Sesay, and V. Virtanen (2014). Microchim. Acta 174, 337.

    Article  CAS  Google Scholar 

  5. G. St Helen, P. Jacob 3rd, M. Peng, D. A. Dempsey, S. K. Hammond, and N. L. Benowitz (2014). Oncology 23, 2774.

    CAS  Google Scholar 

  6. R. J. S. Nastaran Jadbabaei, D. Shuai, and H. Zhang (2017). Appl. Catal. A General 543, 209.

    Article  CAS  Google Scholar 

  7. R. Paolesse, S. Nardis, D. Monti, M. Stefanelli, and C. Di Natale (2017). Chem. Rev. 117, 2517.

    Article  CAS  PubMed  Google Scholar 

  8. W. S. P. Carvalho, M. Wei, N. Ikpo, Y. Gao, and M. J. Serpe (2018). Anal. Chem. 90, 459.

    Article  CAS  PubMed  Google Scholar 

  9. R. Gui, H. Jin, H. Guo, and Z. Wang (2018). Biosens. Bioelectron. 100, 56.

    Article  CAS  PubMed  Google Scholar 

  10. S. Wang, X. Li, Y. Liu, C. Zhang, X. Tan, G. Zeng, B. Song, and L. Jiang (2018). J. Hazard. Mater. 342, 177.

    Article  CAS  PubMed  Google Scholar 

  11. B. Thirumalraj, C. Rajkumar, S. M. Chen, and K. Y. Lin (2017). J. Colloid Interface Sci. 499, 83.

    Article  CAS  PubMed  Google Scholar 

  12. M. Puiu, L. Bondilǎ, A. Rǎducan, and D. Oancea (2017). Appl. Catal. A Gen. 516, 90.

    Article  CAS  Google Scholar 

  13. Y. Zhang, H. Yang, Z. Zhou, K. Huang, S. Yang, and G. Han (2017). Bioconj. Chem. 28, 869.

    Article  CAS  Google Scholar 

  14. R. Das, C. D. Vecitis, A. Schulze, B. Cao, A. F. Ismail, X. Lu, J. Chen, and S. Ramakrishna (2017). Chem. Soc. Rev. 46, 6946.

    Article  CAS  PubMed  Google Scholar 

  15. D. Guillen, A. Ginebreda, M. Farre, R. M. Darbra, M. Petrovic, M. Gros, and D. Barcelo (2012). Sci. Total Environ. 440, 236.

    Article  CAS  PubMed  Google Scholar 

  16. Kuan Soo Shin, Jeong-Yong Choi, and Kwan Kim (2012). Appl. Catal. A General 413–414, 170.

    Article  CAS  Google Scholar 

  17. M. M. Hussain, M. M. Rahman, and A. M. Asiri (2016). PLoS ONE 11, e0166265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Gao, M. Liu, H. Song, S. Zhang, Y. Qian, and A. Li (2016). J. Hazard. Mater. 318, 99.

    Article  CAS  PubMed  Google Scholar 

  19. A. AbuRabi-Stanković, Z. Mojović, A. Milutinović-Nikolić, N. Jović-Jovičić, P. Banković, M. Žunić, and D. Jovanović (2013). Appl. Clay Sci. 77–78, 61.

    Article  CAS  Google Scholar 

  20. J. Min, B. Wang, and X. Hu (2017). Sci. Rep. 7, 5983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. K. S. Asha, G. S. Vaisakhan, and S. Mandal (2016). Nanoscale 8, 11782.

    Article  CAS  PubMed  Google Scholar 

  22. V. Sethuraman, P. Muthuraja, J. Anandha Raj, and P. Manisankar (2016). Biosens. Bioelectron. 84, 112.

    Article  CAS  PubMed  Google Scholar 

  23. J. Chen, J. Tang, J. Zhou, L. Zhang, G. Chen, and D. Tang (2014). Anal. Chim. Acta 810, 10.

    Article  CAS  PubMed  Google Scholar 

  24. A. Arvinte, M. Ignat, M. Pinteala, and L. D. Ignat (2017). Curr. Anal. Chem. 13, 370.

    Article  CAS  Google Scholar 

  25. X. Tan, B. Li, K. Liew, and C. Li (2010). Biosen. Bioelectron. 26, 868.

    Article  CAS  Google Scholar 

  26. J. Huang, Z. Wang, J. Zhang, X. Zhang, J. Ma, and Z. Wu (2015). Sci. Rep. 5, 9268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. H. Yu, M. Zhao, L. Zhang, H. Dong, H. Yu, and Z. Chen (2017). Environ. Technol. 38, 2907.

    Article  CAS  PubMed  Google Scholar 

  28. L. Xu, G. Liang, and M. Yin (2017). Chemosphere 173, 425.

    Article  CAS  PubMed  Google Scholar 

  29. P. Mandal, B. K. Dubey, and A. K. Gupta (2017). Waste Manag. 69, 250.

    Article  CAS  PubMed  Google Scholar 

  30. A. S. Fajardo, H. F. Seca, R. C. Martins, V. N. Corceiro, J. P. Vieira, M. E. Quinta-Ferreira, and R. M. Quinta-Ferreira (2017). Environ. Sci. Pollut. Res. Int. 24, 7521.

    Article  CAS  PubMed  Google Scholar 

  31. R. Pfeifer, P. T. Martinhon, C. Sousa, J. C. Moreira, M. A. Chaer do Nascimento, and J. Barek (2015). Int. J. Electrochem. Sci. 10, 7261.

    CAS  Google Scholar 

  32. G. Maduraiveeran and W. Jin (2017). Trends Environ. Anal. Chem. 13, 10.

    Article  CAS  Google Scholar 

  33. M. Pontié, G. Thouand, F. De Nardi, I. Tapsoba, and S. Lherbette (2011). Electroanalytical 23, 1579.

    Article  CAS  Google Scholar 

  34. M. Govindhan, T. Lafleur, B.-R. Adhikari, and A. Chen (2015). Electroanalytical 27, 902.

    Article  CAS  Google Scholar 

  35. C. W. Chang, G. Maduraiveeran, J. C. Xu, G. W. Hunter, and P. K. Dutta (2014). Sens. Actuators B Chem. 204, 183.

    Article  CAS  Google Scholar 

  36. G. Maduraiveeran and R. Ramaraj (2017). J. Anal. Sci. Technol. 8, 1.

    Article  CAS  Google Scholar 

  37. M. Govindhan, Z. Liu, and A. Chen (2016). Nanomaterials 6, 1.

    Article  CAS  Google Scholar 

  38. M. Govindhan, M. Amiri, and A. Chen (2015). Biosens. Bioelectron. 66, 474.

    Article  CAS  PubMed  Google Scholar 

  39. G. Maduraiveeran and R. Ramaraj (2007). Electrochem. Commun. 9, 2051.

    Article  CAS  Google Scholar 

  40. G. Maduraiveeran and R. Ramaraj (2007). J. Electroanal. Chem. 608, 52.

    Article  CAS  Google Scholar 

  41. G. Maduraiveeran, M. Sasidharan, and V. Ganesan (2015). Biosens. Bioelectron. 103, 113.

    Article  CAS  Google Scholar 

  42. G. Maduraiveeran, M. Sasidharan, and W. Jin (2018). J. Electroanal. Chem. 808, 259.

    Article  CAS  Google Scholar 

  43. G. Jie, L. Tan, Y. Zhao, and X. Wang (2017). Biosens. Bioelectron. 94, 243.

    Article  CAS  PubMed  Google Scholar 

  44. P. Liu and M. Zhao (2009). Appl. Surf. Sci. 255, 3989.

    Article  CAS  Google Scholar 

  45. Y. Zhou, L. Tang, G. Zeng, J. Chen, J. Wang, C. Fan, G. Yang, Y. Zhang, and X. Xie (2015). Biosens. Bioelectron. 65, 382–389.

    Article  CAS  PubMed  Google Scholar 

  46. V. Thangaraj, S. Mahmud, W. Li, F. Yang, and H. Liu (2018). IET Nanobiotechnol. 12, 47.

    Article  Google Scholar 

  47. Y. Hu, Q. Zhang, Z. Guo, S. Wang, C. Du, and C. Zhai (2017). Biosens. Bioelectron. 98, 91.

    Article  CAS  PubMed  Google Scholar 

  48. S. Pethkar, M. Aslam, I. S. Mulla, P. Ganeshan, and K. Vijayamohanan (2001). J. Mater. Chem. 11, 1710.

    Article  CAS  Google Scholar 

  49. G. Maduraiveeran, V. Tamil Mani, and R. Ramaraj (2011). Curr. Sci. 100, 199.

    CAS  Google Scholar 

  50. G. Schmid (ed.) Clusters and Colloids (VCH, New York, 1994).

    Google Scholar 

  51. J. Sun, F. Yang, D. Zhao, C. Chen, and X. Yang (2015). ACS Appl. Mater. Interfaces 7, 6860.

    Article  CAS  PubMed  Google Scholar 

  52. B. Khalili Najafabadi and J. F. Corrigan (2015). Chem. Commun. 51, 665.

    Article  CAS  Google Scholar 

  53. J.-C. Chen, A. Beyer, B. Haas, K. Volz, W. Heimbrodt, J. M. Montenegro Martos, W. Chang, and W.J. Parak (2012). Langmuir 28, 8915.

    Article  CAS  PubMed  Google Scholar 

  54. S. Roy, A. Baral, and A. Banerjee (2014). ACS Appl. Mater. Interfaces 6, 4050.

    Article  CAS  PubMed  Google Scholar 

  55. Y. Zhou, M. Chen, Y. Zhuo, Y. Chai, W. Xu, and R. Yuan (2017). Anal. Chem. 89, 6787.

    Article  CAS  PubMed  Google Scholar 

  56. L. Zhang, Y. Wang, L. Shen, J. Yu, S. Ge, and M. Yan (2017). Analyst 142, 2587.

    Article  CAS  PubMed  Google Scholar 

  57. J.-H. Park, J.-K. Park, and H.-Y. Shi (2007). Mater. Lett. 61, 156.

    Article  CAS  Google Scholar 

  58. M. Govindhan and A. Chen (2016). Microchim. Acta 183, 2879.

    Article  CAS  Google Scholar 

  59. R. C. Engstrom (1982). Anal. Chem. 54, 2310.

    Article  CAS  Google Scholar 

  60. Dirk L. Van Hyning and Charles F. Zukoski (2001). Langmuir 17, 3120.

    Article  CAS  Google Scholar 

  61. G. Maduraiveeran and R. Ramaraj (2009). Anal. Chem. 81, 7552.

    Article  CAS  PubMed  Google Scholar 

  62. G. Maduraiveeran, M. Kundu, and M. Sasidharan (2018). J. Mater. Sci. 53, 8328.

    Article  CAS  Google Scholar 

  63. J. Ghilane, F. R. Fan, A. J. Bard, and N. Dunwoody (2007). Nano Lett. 7, 1406.

    Article  CAS  PubMed  Google Scholar 

  64. C. Busche, L. Vila-Nadal, J. Yan, H. N. Miras, D. L. Long, V. P. Georgiev, A. Asenov, R. H. Pedersen, N. Gadegaard, M. M. Mirza, D. J. Paul, J. M. Poblet, and L. Cronin (2014). Nature 515, 545.

    Article  CAS  PubMed  Google Scholar 

  65. L. Yuan, J. Liu, Z. Xia, S. Wang, and G. Sun (2014). Electrochim. Acta 135, 168.

    Article  CAS  Google Scholar 

  66. D. Duan, X. You, H. Wei, and S. Liu (2015). J. Power Sources 293, 292.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GM thanks to DST-FIST (fund for improvement of S&T infrastructure) for financial assistance for Department of Chemistry, SRM Institute of Science and Technology, No. SR/FST/CST-266/2015(c).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Maduraiveeran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaiyarasi, G.M., Elakkiya, R., Kundu, M. et al. Uncapped Silver Nanoclusters as Potential Catalyst for Enhanced Direct-Electrochemical Oxidation of 4-Nitrophenol. J Clust Sci 30, 393–402 (2019). https://doi.org/10.1007/s10876-019-01499-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01499-7

Keywords

Navigation