Skip to main content

Advertisement

Log in

Improvement of Cancer Therapy by TAT Peptide Conjugated Gold Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) are potent anticancer agent that controls drug delivery to tumors. Here, we describe the identification of TAT-Cell Penetrating Peptide (TAT-CPP) conjugated AuNPs, as a novel delivery system to the cancerous regions. TAT-peptide was modified to BSA-AuNPs [Bovine Serum Albumin (BSA) coated AuNPs] electrostatically. The binding efficiency of TAT-AuNPs was tested using Dynamic Light Scattering, UV–Vis spectrophotometer and Zeta potential. The nano-complex (BSA-AuNPs; with and without TAT-CPP) was applied against Rhabdomyosarcoma and Murine fibroblast (L20B) cancer lines, in vitro. Cytotoxicity effect was evaluated by MTT assay at 0.125, 0.25, 0.5 and 1 mg/ml concentration for 24 and 48 h incubation time. Results demonstrated that TAT-(BSA-AuNPs) exhibits significant toxicity for both cancer cell lines. TAT-CPP has improved cancer cell reduction, where cytotoxicity more than 80% has been achieved. This study was conducted to achieve the simplicity and facility in cancer therapy, where the small-sized TAT-AuNPs acts as a simple therapeutic agent in the specific delivery and targeting the deep, irregular, and complicated cancer regions in the human body. Therefore, it could replace other cancer treatment techniques, even dispense the laser irradiation in the phototherml therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Blanco, A. Hsiao, A. P. Mann, M. G. Landry, F. Meric-Bernstam, and M. Ferrari (2011). Cancer Sci. 102, (7), 1247–1252.

    Article  CAS  PubMed  Google Scholar 

  2. S. M. H. AL-Jawad, A. A. Taha, M. M. F. Al-Halbosiy, and L. F. A. AL-Barram (2018). Photodiagnosis Photodyn. Ther. 21, 201–210.

    Article  CAS  PubMed  Google Scholar 

  3. V. V. Tuchin (2015). J. Biomed. Photonics Eng. 1, 2.

    Article  Google Scholar 

  4. T. Gould, Q. Wang, and T. J. Pfefer (2014). Biomed. Opt. Exp. 5, 832–847.

    Article  Google Scholar 

  5. G. Han and J. Xi (2016). Light-Med. Deep-Tissue Theranostics. 6, 2292–2294.

    PubMed  Google Scholar 

  6. S. Jafari, S. Maleki Dizaj, and K. Adibkia (2015). Bioimpacts 5, (2), 103–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. A. Sousa, J. T. Morgan, P. H. Brown, A. Adams, M. P. Jayasekara, G. Zhang, C. J. Ackerson, M. J. Kruhlak, and R. D. Leapman (2012). Small 8, (14), 2277–2286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. R. Nicol, D. Dixon, and J. A. Coulter (2015). Nanomedicine 10, (8), 1315–1326.

    Article  CAS  PubMed  Google Scholar 

  9. R. Sawant and V. Torchilin (2010). Mol. BioSyst. 6, 628–640.

    Article  CAS  PubMed  Google Scholar 

  10. S. Kalmodia, S. Vandhana, B. R. Tejaswini Rama, B. Jayashree, T. Sreenivasan Seethalakshmi, V. Umashankar, W. Yang, C. J. Barrow, S. Krishnakumar, and S. V. Elchuri (2016). Cancer Nanotechnol. 7, (1), 2–19.

    Article  Google Scholar 

  11. C. Ciobanasu, J. P. Siebrasse, and U. Kubitscheck (2010). Biophys. J. 99, (1), 153–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. L. Singh, R. Parboosing, H. G. Kruger, G. E. M. Maguire, and T. Govender (2016). Nanotechnology 7, 1–7.

    CAS  Google Scholar 

  13. T. Mironava, M. Hadjiargyrou, M. Simon, V. Jurukovski, and M. H. Rafailovich (2010). Nanotoxicology 4, (1), 120–137.

    Article  CAS  PubMed  Google Scholar 

  14. L. D. F. Vasconcelos Complexes of Cell-Penetrating Peptides with Oligonucleotides Structure, Binding and Translocation in Lipid Membranes (Stockholm University, Stockholm, 2017), pp. 1–79.

    Google Scholar 

  15. J. H. Grossman and S. E. McNeil (2012). Phys. Today. 65, (8), 38.

    Article  CAS  Google Scholar 

  16. M. Umair, I. Javed, M. Rehman, A. Madni, A. Javeed, A. Ghafoor, and M. Ashraf (2016). J. Pharm. Pharm. Sci. 19, (2), 161–180.

    Article  CAS  PubMed  Google Scholar 

  17. S. Huo, S. Jin, X. Ma, X. Xue, K. Yang, A. Kumar, P. C. Wang, J. Zhang, Z. Hu, and X. J. Liang (2014). ACS Nano. 8, (6), 5852–5862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. I. Capek (2015). J. Nanomed. Res. 2, (1), 1–10.

    Article  Google Scholar 

  19. E. Oh, J. B. Delehanty, K. E. Sapsford, K. Susumu, R. Goswami, J. B. Blanco-Canosa, P. E. Dawson, J. Granek, M. Shoff, Q. Zhang, P. L. Goering, A. Huston, and I. L. Medintz (2011). ACS Nano. 5, (8), 6434–6448.

    Article  CAS  PubMed  Google Scholar 

  20. Y. Jiang, S. Huo, T. Mizuhara, R. Das, Y. W. Lee, S. Hou, D. F. Moyano, B. Duncan, X. J. Liang, and V. M. Rotello (2015). ACS Nano. 9, (10), 9986–9993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. P. Wang, X. Wang, L. Wang, X. Hou, W. Liu, and C. Chen (2015). Sci. Technol. Adv. Mater. 16, (3), 1–15.

    Article  Google Scholar 

  22. Hyejin Park, Hiroshi Tsutsumi, and Hisakazu Mihara (2013). Biomaterials 34, 4872–4879.

    Article  CAS  PubMed  Google Scholar 

  23. G. Guidotti, L. Brambilla, and D. Rossi (2017). Trends Pharmacol Sci. 38, (4), 406–424.

    Article  CAS  PubMed  Google Scholar 

  24. F. Madani, S. Lindberg, U. Langel, S. Futaki, and A. Gräslund (2011). J Biophys. 2011, 414729.

    Article  PubMed  PubMed Central  Google Scholar 

  25. S. Trabulo, A. L. Cardoso, M. Mano, and M. C. P. Lima (2010). Pharmaceuticals 3, (4), 961–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Song, Y. Zhang, W. Zhang, J. Chen, X. Yang, P. Ma, B. Zhang, B. Liu, J. Ni, and R. Wang (2015). Peptides. 63, 143–149.

    Article  CAS  PubMed  Google Scholar 

  27. J. Thundimadathil (2012). J. Amino. Acids. 2012, 967347.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Z. Krpetić, S. Saleemi, I. A. Prior, V. See, R. Qureshi, and M. Brust (2011). ACS Nano. 5, (6), 5195–5201.

    Article  PubMed  Google Scholar 

  29. A. Mishra, G. H. Lai, N. W. Schmidt, V. Z. Sun, A. R. Rodriguez, R. Tong, L. Tang, J. Cheng, T. J. Deming, D. T. Kamei, and G. C. Wong (2011). Proc. Natl. Acad. Sci. USA. 108, (41), 16883–16888.

    Article  CAS  PubMed  Google Scholar 

  30. D. Zhang, J. Wang, and D. Xu (2016). J. Control Release. 229, 130–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma M. H. AL-Jawad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, A.A., AL-Jawad, S.M.H. & AL-Barram, L.F.A. Improvement of Cancer Therapy by TAT Peptide Conjugated Gold Nanoparticles. J Clust Sci 30, 403–414 (2019). https://doi.org/10.1007/s10876-019-01497-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01497-9

Keywords

Navigation