Skip to main content
Log in

The pH-Controlled Hydrothermal Synthesis and Crystal Structure of Two Novel Phosphomolybdate Derivatives

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two novel phosphomolybdate derivatives, (H2en)(Hen)2(H2P2Mo5O23)·5H2O (1) and [Cu(phen)(en)][Cu(phen)(en)(H2O)]2[PMo VI8 Mo V4 O40{Cu(phen)}2]2·6H2O (2) (en = ethylenediamine, phen = 1,10′-phenanthroline), were synthesized under hydrothermal technique and characterized by crystal X-ray diffraction analysis, elemental analysis, IR and TGA. Compound 1 is constructed from a [H2P2Mo5O23]4− polyoxoanion and one (H2en)2+ cation and two (Hen)+ cations and is a typical Strandberg-type hepteropoly compound. The interaction force between the components are electrostatic force and hydrogen bonds which involve polyoxoanions, water molecules and ethylenediammonium cations. Compound 2 consists of one [Cu(phen)(en)]2+ and two [Cu(phen)(en)(H2O)]2+ cations and two [PMo VI8 Mo V4 O40{Cu(phen)}2]3− polyoxoanions. The reduced Keggin polyoxoanion [PMo VI8 Mo V4 O40]7− of 2 is capped by two divalent Cu atoms through four bridging oxo groups on two opposite {Mo4O4} faces. The results reveal that the pH plays a significant role in promoting the diversity of structural motifs. The effect of en is not only to ensure the required amounts of ligands for the reaction process, but also to control the pH. In the synthetic process, the control of the reaction conditions plays a crucial role in constructing different structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. Engl. 30, 34.

    Article  Google Scholar 

  2. C. L. Hill (1998). Chem. Rev. 98, 1.

    Article  CAS  PubMed  Google Scholar 

  3. P. J. Hagrman, D. Hagrman, and J. Zubieta (1999). Angew. Chem. Int. Ed. 38, 2638.

    Article  CAS  Google Scholar 

  4. H. Q. Tan, Y. G. Li, Z. M. Zhang, C. Qin, X. L. Wang, E. B. Wang, and Z. M. Su (2007). J. Am. Chem. Soc. 129, 10066.

    Article  CAS  PubMed  Google Scholar 

  5. J. P. Wang, H. X. Ma, L. C. Zhang, W. S. You, and Z. M. Zhu (2014). Dalton Trans. 43, 17172–17176.

    Article  CAS  PubMed  Google Scholar 

  6. Z. L. Li, Y. Wang, L. C. Zhang, J. P. Wang, W. S. You, and Z. M. Zhu (2014). Dalton Trans. 43, 5840–5846.

    Article  CAS  PubMed  Google Scholar 

  7. H. X. Ma, J. Du, Z. M. Zhu, T. Lu, F. Su, and L. C. Zhang (2016). Dalton Trans. 45, 1631–1637.

    Article  CAS  PubMed  Google Scholar 

  8. S. C. Sun, X. Liu, L. Yang, H. Tan, and E. B. Wang (2016). Eur. J. Inorg. Chem. 2016, 4179–4184.

    Article  CAS  Google Scholar 

  9. Y. Ammari, E. Dhahri, M. Rzaigui, E. K. Hlil, and S. Abid (2016). J. Clust. Sci. 27, 1213–1227.

    Article  CAS  Google Scholar 

  10. C. Dey, T. Kundu, and R. Banerjee (2012). Chem Commun. 4848, 266–268.

    Article  Google Scholar 

  11. I. Nagazi and A. Haddad (2013). J. Clust. Sci. 24, 145–155.

    Article  CAS  Google Scholar 

  12. L. Xu, H. Zhang, E. Wang, A. Wu, and Z. Li (2002). Mater. Lett. 54, 452–457.

    Article  CAS  Google Scholar 

  13. J. X. Meng, Y. G. Li, X. L. Wang, and E. B. Wang (2009). J. Coord. Chem. 62, 2283–2289.

    Article  CAS  Google Scholar 

  14. X. G. Cao, L. W. He, B. Z. Lin, and Z. J. Xiao (2010). J. Chem. Crystallogr. 40, 443–447.

    Article  CAS  Google Scholar 

  15. S. Upreti and A. Ramanan (2006). Crys. Growth Des. 6, 2066–2071.

    Article  CAS  Google Scholar 

  16. Y. Wang, L. C. Zhang, Z. M. Zhu, N. Li, A. F. Deng, and S. Y. Zheng (2011). Trans. Met. Chem. 36, 261–267.

    Article  CAS  Google Scholar 

  17. S. R. Jin, L. M. Zhang, S. Z. Liu, L. Bo, and X. G. Meng (2008). J. Wuhan Univ. Technol.-Mater. Sci. Ed. 23, 407–410.

    Article  CAS  Google Scholar 

  18. J. Lu, Y. Xu, N. K. Goh, and L. S. Chia (1998). Chem. Commun. 24, 2733–2734.

    Article  Google Scholar 

  19. E. Burkholder and J. Zubieta (2001). Chem. Commun. 20, 2056–2057.

    Article  Google Scholar 

  20. M. Bartholom, H. Chueng, S. Pellizzeri, K. Ellis-Guardiola, S. Jones, and J. Zubieta (2012). Inorg. Chim. Acta 389, 90–98.

    Article  CAS  Google Scholar 

  21. M. Carraro, A. Sartorel, G. Scorrano, C. Maccato, M. H. Dickman, U. Kortz, and M. Bonchio (2008). Angew. Chem. Int. Ed. 47, 7275–7279.

    Article  CAS  Google Scholar 

  22. M. P. Lowe, J. C. Lockhart, W. Clegg, and K. A. Fraser (1994). Angew. Chem. Int. Ed. 33, 451–454.

    Article  Google Scholar 

  23. J. Niu, J. Ma, J. Zhao, P. Ma, and J. Wang (2011). Inorg. Chem. Commun. 14, 474–477.

    Article  CAS  Google Scholar 

  24. K. Yu, B.-B. Zhou, Y. Yu, Z.-H. Su, H. Wang, C. Wang, and C. Wang (2012). Dalton Trans. 41, 10014–10020.

    Article  CAS  PubMed  Google Scholar 

  25. Q. Chen and C. L. Hill (1996). Inorg. Chem. 35, 2403.

    Article  CAS  PubMed  Google Scholar 

  26. F. Y. Li, L. Xu, Y. G. Wei, and E. B. Wang (2005). Inorg. Chem. Commun. 8, 263.

    Article  CAS  Google Scholar 

  27. Y. G. Li, E. B. Wang, and S. T. Wang (2002). J. Mol. Struct. 611, 185.

    Article  CAS  Google Scholar 

  28. J. X. Meng, Y. Lu, Y. G. Li, H. Fu, and E. B. Wang (2011). Cryst. Eng. Commun. 13, 2479–2486.

    Article  CAS  Google Scholar 

  29. A. Müller, C. Beugholt, P. Kögerler, H. Bögge, S. Bud’ko, and M. Luban (2000). Inorg. Chem. 39, 5176–5177.

    Article  CAS  PubMed  Google Scholar 

  30. M. Yuan, Y. G. Li, E. B. Wang, C. G. Tian, N. H. Hu, and H. Q. Jia (2003). Inorg. Chem. 42, 3670–3676.

    Article  CAS  PubMed  Google Scholar 

  31. Y. P. Bai, Y. G. Li, E. B. Wang, X. L. Wang, Y. Lu, and L. Xu (2005). J. Mol. Struct. 752, 54–59.

    Article  CAS  Google Scholar 

  32. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann (2009). J. Appl. Cryst. 42, 339–341.

    Article  CAS  Google Scholar 

  33. G. M. Sheldrick (2015). Acta. Cryst. A71, 3–8.

    Google Scholar 

  34. G. M. Sheldrick (2015). Acta. Cryst. C71, 3–8.

    Google Scholar 

  35. Z. Z. Lin, H. H. Zhang, C. C. Huang, and R. Q. Sun (2002). Chinese J. Struct. Chem. 21, 42–45.

    Google Scholar 

  36. J. W. Zhao, Y. Y. Li, Y. H. Wang, D. Y. Shi, J. Luo, and L. J. Chen (2013). Russ. J. Coord. Chem. 39, 519–523.

    Article  CAS  Google Scholar 

  37. R. Strandberg (1973). Acta. Chem. Scand. 27, 1004–1018.

    Article  CAS  Google Scholar 

  38. T. Akutagawa, D. Endo, H. Imai, S. Noro, L. Cronin, and T. Nakamura (2006). Inorg. Chem. 45, 8628–8637.

    Article  CAS  PubMed  Google Scholar 

  39. F. Zocchi (2006). Chem. Phys. Let. 421, 277–280.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Jilin Agricultural Science and Technology University the Science Foundation (No. 2015246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Xia Ma.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, FX., Chen, YG., Yang, HY. et al. The pH-Controlled Hydrothermal Synthesis and Crystal Structure of Two Novel Phosphomolybdate Derivatives. J Clust Sci 30, 123–129 (2019). https://doi.org/10.1007/s10876-018-1468-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1468-1

Keyword

Navigation