Skip to main content

Advertisement

Log in

Electronic and Work Function-Based Sensors for Acetylsalicylic Acid Based on the AlN and BN Nanoclusters: DFT Studies

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Using density functional theory calculations, we investigated the potential application of Al12N12 and B12N12 nanoclusters as an electronic or work function type sensor for acetylsalicylic acid (ASA) drug detection. The drug tends to be adsorbed on the surface of both AlN and BN clusters via its –COOH group with adsorption energies about − 62.8 and − 21.9 kcal/mol, respectively. The AlN nanocluster is neither electronic nor work function based sensor for ASA because of a low sensitivity, and a huge recovery time (~ 9.8 × 1038 s). But the response of BN nanocluster is completely different, and its electrical conductivity is largely increased in the presence of ASA drug due to the large stabilization of LUMO level. We concluded that the BN nanocluster may be a promising candidate to detect the ASA drug with a short recovery time about 109 s and a high electronic sensitivity. As the work function of the BN nanocluster is not affected by the ASA adsorption, it cannot be used as a work function type sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. J. Sanghavi and A. K. Srivastava (2010). Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta 55, 8638–8648.

    Article  CAS  Google Scholar 

  2. V. Silvestre, V. M. Mboula, C. Jouitteau, S. Akoka, R. J. Robins, and G. S. Remaud (2009). Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol. J. Pharm. Biomed. Anal. 50, 336–341.

    Article  CAS  Google Scholar 

  3. M. M. Sena, J. C. B. Fernandes, L. Rover Jr., R. J. Poppi, and L. T. Kubota (2000). Application of two-and three-way chemometric methods in the study of acetylsalicylic acid and ascorbic acid mixtures using ultraviolet spectrophotometry. Anal. Chim. Acta 409, 159–170.

    Article  CAS  Google Scholar 

  4. M. Ito, T. Suzuki, S. Yada, H. Nakagami, H. Teramoto, E. Yonemochi, and K. Terada (2010). Development of a method for nondestructive NIR transmittance spectroscopic analysis of acetaminophen and caffeine anhydrate in intact bilayer tablets. J. Pharm. Biomed. Anal. 53, 396–402.

    Article  CAS  Google Scholar 

  5. B. Pamukcu (2007). A review of aspirin resistance; definition, possible mechanisms, detection with platelet function tests, and its clinical outcomes. J. Thromb. Thromb. 23, 213–222.

    Article  CAS  Google Scholar 

  6. M. M. Foroughi and M. Ranjbar (2017). Graphene oxide doped with PbO nanoparticles, synthesis by microwave assistant thermal decomposition and investigation of optical property. J. Clust. Sci. 28, 2847–2856.

    Article  CAS  Google Scholar 

  7. H. Salimi, A. A. Peyghan, and M. Noei (2015). Adsorption of formic acid and formate anion on ZnO nanocage: a DFT study. J. Clust. Sci. 26, 609–621.

    Article  CAS  Google Scholar 

  8. R. B. dos Santos, R. Rivelino, F. B. Mota, and G. K. Gueorguiev (2012). Exploring hydrogenation and fluorination in curved 2D carbon systems: a density functional theory study on corannulene. J. Phys. Chem. A 116, 9080–9087.

    Article  Google Scholar 

  9. A. A. Peyghan, M. B. Tabar, and S. Yourdkhani (2013). A theoretical study of OH and OCH3 free radical adsorption on a nanosized tube of BC2N. J. Clust. Sci. 24, 1–10.

    Article  Google Scholar 

  10. J. Beheshtian, M. T. Baei, Z. Bagheri, and A. A. Peyghan (2013). Carbon nitride nanotube as a sensor for alkali and alkaline earth cations. Appl. Surf. Sci. 264, 699–706.

    Article  CAS  Google Scholar 

  11. R. Rivelino, R. B. dos Santos, F. de Brito Mota, and G. K. Gueorguiev (2010). Conformational effects on structure, electron states, and raman scattering properties of linear carbon chains terminated by graphene-like pieces. J. Phys. Chem. C 114, 16367–16372.

    Article  CAS  Google Scholar 

  12. M. T. Baei, A. A. Peyghan, and Z. Bagheri (2013). Electronic, energetic, and geometric properties of methylene-functionalized C60. J. Clust. Sci. 24, 669–678.

    Article  CAS  Google Scholar 

  13. A. A. Peyghan, M. T. Baei, S. Hashemian, and P. Torabi (2013). First principles calculations of electric field effect on the (6,0) zigzag single-walled silicon carbide nanotube for use in nano-electronic circuits. J. Clust. Sci. 24, 591–604.

    Article  CAS  Google Scholar 

  14. C.-H. Jiang, Q. Chen, G.-X. Ge, Y.-B. Li, and J.-G. Wan (2016). Structure and spin-polarized transport of co atomic chains on graphene with topological line defects. J. Clust. Sci. 27, 875–882.

    Article  CAS  Google Scholar 

  15. X.-D. Song, S. Wang, C. Hao, and J.-S. Qiu (2014). Investigation of SO2 gas adsorption in metal–organic frameworks by molecular simulation. Inorg. Chem. Commun. 46, 277–281.

    Article  CAS  Google Scholar 

  16. Z. Dong, X. Kong, Y. Wu, J. Zhang, and Y. Chen (2017). High-sensitive room-temperature NO2 sensor based on a soluble n-type phthalocyanine semiconductor. Inorg. Chem. Commun. 77, 18–22.

    Article  CAS  Google Scholar 

  17. J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Nitrate adsorption by carbon nanotubes in the vacuum and aqueous phase. Chem. Mon. 143, 1623–1626.

    Article  CAS  Google Scholar 

  18. J.-Y. Zhang, L.-J. Su, Q.-J. Guo, and J. Tao (2017). Semiconducting spin-crossover cobalt(II) compound with non-integer charge distribution among TCNQ radicals. Inorg. Chem. Commun. 82, 39–43.

    Article  CAS  Google Scholar 

  19. N. L. Hadipour, A. Ahmadi Peyghan, and H. Soleymanabadi (2015). Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J. Phys. Chem. C 119, 6398–6404.

    Article  CAS  Google Scholar 

  20. L. Zhang, W. Yang, X.-Y. Wu, M. Huo, C.-Z. Lu, and W.-Z. Chen (2016). A polyhedron-based cobalt-organic framework for gas adsorption and separation. Inorg. Chem. Commun. 67, 10–13.

    Article  CAS  Google Scholar 

  21. K. Wakamatsu, K. Nishimoto, and T. Shibahara (2000). TDDFT study of electronic spectra of photochromic dinuclear molybdenum complex. Inorg. Chem. Commun. 3, 677–679.

    Article  CAS  Google Scholar 

  22. A. A. Peyghan and H. Soleymanabadi (2015). Computational study on ammonia adsorption on the X12Y12 nanoclusters (X = B, Al and Y = N, P). Curr. Sci. 108, 00113891.

    Google Scholar 

  23. J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2013). Functionalization of BN nanosheet with N2H4 may be feasible in the presence of Stone–Wales defect. Struct. Chem. 24, 1565–1570.

    Article  CAS  Google Scholar 

  24. M. Samadizadeh, S. F. Rastegar, and A. A. Peyghan (2015). F, Cl, Li+ and Na+ adsorption on AlN nanotube surface: a DFT study. Phys. E 69, 75–80.

    Article  CAS  Google Scholar 

  25. C. Wang, X. Luo, S. Zhang, Q. Shen, and L. Zhang (2014). Effects of nitrogen gas ratio on magnetron sputtering deposited boron nitride films. Vacuum 103, 68–71.

    Article  CAS  Google Scholar 

  26. J. Beheshtian, A. A. Peyghan, Z. Bagheri, and M. Kamfiroozi (2012). Interaction of small molecules (NO, H2, N2, and CH4) with BN nanocluster surface. Struct. Chem. 23, 1567–1572.

    Article  CAS  Google Scholar 

  27. Z. Bagheri and A. A. Peyghan (2013). DFT study of NO2 adsorption on the AlN nanocones. Comput. Theor. Chem. 1008, 20–26.

    Article  CAS  Google Scholar 

  28. A. V. Moradi, A. A. Peyghan, S. Hashemian, and M. T. Baei (2012). Theoretical study of thiazole adsorption on the (6, 0) zigzag single-walled boron nitride nanotube. Bull. Korean Chem. Soc. 33, 3285–3292.

    Article  CAS  Google Scholar 

  29. J. Beheshtian, H. Soleymanabadi, A. A. Peyghan, and Z. Bagheri (2012). A DFT study on the functionalization of a BN nanosheet with PC-X,(PC = phenyl carbamate, X = OCH3, CH3, NH2, NO2 and CN). Appl. Surf. Sci. 268, 436–441.

    Article  Google Scholar 

  30. M. Tosa and K. Yoshihara (1990). Surface precipitation of boron nitride on the surface of stainless steel/boron nitride film. Vacuum 41, 1873–1875.

    Article  CAS  Google Scholar 

  31. J. Beheshtian, A. A. Peyghan, M. B. Tabar, and Z. Bagheri (2013). DFT study on the functionalization of a BN nanotube with sulfamide. Appl. Surf. Sci. 266, 182–187.

    Article  CAS  Google Scholar 

  32. N. Kostoglou, K. Polychronopoulou, and C. Rebholz (2015). Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets. Vacuum 112, 42–45.

    Article  CAS  Google Scholar 

  33. M. Rezaei-Sameti and E. Samadi Jamil (2016). The adsorption of CO molecule on pristine, As, B, BAs doped (4, 4) armchair AlNNTs: a computational study. J. Nanostruct. Chem. 6, 197–205.

    Article  CAS  Google Scholar 

  34. J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2013). Sensing behavior of Al-rich AlN nanotube toward hydrogen cyanide. J. Mol. Model. 19, 2197–2203.

    Article  CAS  Google Scholar 

  35. Z. Goodarzi, M. Maghrebi, A. F. Zavareh, Z.-B. Mokhtari-Hosseini, B. Ebrahimi-hoseinzadeh, A. H. Zarmi, and M. Barshan-tashnizi (2015). Evaluation of nicotine sensor based on copper nanoparticles and carbon nanotubes. J. Nanostruct. Chem. 5, 237–242.

    Article  CAS  Google Scholar 

  36. K. Yum and M.-F. Yu (2006). Measurement of wetting properties of individual boron nitride nanotubes with the Wilhelmy method using a nanotube-based force sensor. Nano Lett. 6, 329–333.

    Article  CAS  Google Scholar 

  37. E. Salih, M. Mekawy, R. Y. A. Hassan, and I. M. El-Sherbiny (2016). Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite. J. Nanostruct. Chem. 6, 137–144.

    Article  Google Scholar 

  38. A. Soltani, A. Ahmadi Peyghan, and Z. Bagheri (2013). H2O2 adsorption on the BN and SiC nanotubes: a DFT study. Phys. E 48, 176–180.

    Article  CAS  Google Scholar 

  39. C. Zhi, Y. Bando, C. Tang, and D. Golberg (2010). Boron nitride nanotubes. Mater. Sci. Eng. R Rep. 70, 92–111.

    Article  Google Scholar 

  40. D. L. Strout (2000). Structure and stability of boron nitrides: isomers of B12N12. J. Phys. Chem. A 104, 3364–3366.

    Article  CAS  Google Scholar 

  41. R. Wang, D. Zhang, and C. Liu (2005). Theoretical prediction of a novel inorganic fullerene-like family of silicon–carbon materials. Chem. Phys. Lett. 411, 333–338.

    Article  CAS  Google Scholar 

  42. H.-S. Wu, F.-Q. Zhang, X.-H. Xu, C.-J. Zhang, and H. Jiao (2003). Geometric and energetic aspects of aluminum nitride cages. J. Phys. Chem. A 107, 204–209.

    Article  CAS  Google Scholar 

  43. J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Selective function of Al12N12 nano-cage towards NO and CO molecules. Comput. Mater. Sci. 62, 71–74.

    Article  CAS  Google Scholar 

  44. Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe (2009). Potential of AlN nanostructures as hydrogen storage materials. ACS Nano 3, 621–626.

    Article  CAS  Google Scholar 

  45. F. Jensen and H. Toftlund (1993). Structure and stability of C24 and B12N12 isomers. Chem. Phys. Lett. 201, 89–96.

    Article  CAS  Google Scholar 

  46. H.-S. Wu, X.-Y. Cui, X.-F. Qin, D. L. Strout, and H. Jiao (2006). Boron nitride cages from B12N12 to B36N36: square–hexagon alternants vs boron nitride tubes. J. Mol. Model. 12, 537–542.

    Article  CAS  Google Scholar 

  47. L. Mahdavian (2016). Using of B12N12 nano-cage for detection and reduction of 2,3,7,8-tetrachlorodibenzodioxine (TCDD). Sens. Lett. 14, 280–284.

    Article  Google Scholar 

  48. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery (1993). J. Comp. Chem. 14, 1347–1363.

    Article  CAS  Google Scholar 

  49. J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens. Actuators B Chem. 171, 846–852.

    Article  Google Scholar 

  50. M. A. Abdulsattar (2011). SiGe superlattice nanocrystal pure and doped with substitutional phosphorus single atom: density functional theory study. Superlattices Microstruct. 50, 377–385.

    Article  CAS  Google Scholar 

  51. J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Detection of phosgene by Sc-doped BN nanotubes: A DFT study. Sens. Actuators B: Chem. 171, 846–852.

    Article  Google Scholar 

  52. S. Tomic, B. Montanari, and N. M. Harrison (2008). The group III–V’s semiconductor energy gaps predicted using the B3LYP hybrid functional. Phys. E 40, 2125–2127.

    Article  CAS  Google Scholar 

  53. N. O’Boyle, A. Tenderholt, and K. Langner (2008). CCLIB: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845.

    Article  Google Scholar 

  54. T. Shimanouchi (1977). Tables of molecular vibrational frequencies, Consolidated volume II. J. Phys. Chem. Ref. Data 6, 993–1102.

    Article  CAS  Google Scholar 

  55. D. Coker, J. Reimers, and R. Watts (1982). The infrared absorption spectrum of water. Aust. J. Phys. 35, 623–638.

    Article  CAS  Google Scholar 

  56. I. Baikie, S. Mackenzie, P. Estrup, and J. Meyer (1991). Noise and the Kelvin method. Rev. Sci. Instrum. 62, 1326–1332.

    Article  CAS  Google Scholar 

  57. G. Korotcenkov, Sensing layers in work-function-type gas sensors, in: Handbook of Gas Sensor Materials (Springer, Berlin 2013), pp. 377–388.

  58. O. Richardson (1924). Electron emission from metals as a function of temperature. Phys. Rev. 23, 153–157.

    Article  CAS  Google Scholar 

  59. S. Dushman (1930). Thermionic emission. Rev. Mod. Phys. 2, 381–385.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Vessally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadami, R., Vessally, E., Babazadeh, M. et al. Electronic and Work Function-Based Sensors for Acetylsalicylic Acid Based on the AlN and BN Nanoclusters: DFT Studies. J Clust Sci 30, 151–159 (2019). https://doi.org/10.1007/s10876-018-1466-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1466-3

Keywords

Navigation