Skip to main content
Log in

Li-Decorated Fullerenes: A DFT Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Density functional calculations have been applied to study the structure, stability and aromaticity of Li-decorated non-IPR fullerene cages, Cn with n = 44, 46, 48, and 50, and IPR fullerene cages, Cn with n = 60, 70, 76, and 84. Based on our results, the binding energies per Li atom for Li12Cn clusters depend on the type and size of the cages. As of Li-decorated IPR fullerenes, where pentagons are isolated, there is virtually no interaction between the Li atoms, so that the binding energies for the Li-decorated IPR Cn fullerenes are obtained to be larger than those for the Li-decorated non-IPR ones. The C–C bond lengths in the pentagons of Li12Cn clusters are enlarged relative to those of pristine Cn clusters. Based on NBO analysis, charge transfer (~ 0.5e) from Li to the fullerene cage makes the Li atoms positively charged. NICS data suggest that the degree of aromaticity in C60, C76, and C84 cages increases upon formation of the Li-decorated Cn clusters while more positive NICS values are obtained for C70 and the smaller fullerenes with Li decoration of the cages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. P. Jena (2011). J. Phys. Chem. Lett. 2, 206.

    Article  CAS  Google Scholar 

  2. L. Schlapbach and A. Züttel (2001). Nature 414, 353.

    Article  CAS  PubMed  Google Scholar 

  3. B. C. H. Steele and A. Heinzel (2001). Nature (London) 414, 345.

    Article  CAS  Google Scholar 

  4. R. D. Cortright, R. R. Davada, and J. A. Dumesic (2002). Nature (London) 418, 964.

    Article  CAS  Google Scholar 

  5. J. Alper (2003). Science 299, 1686.

    Article  CAS  PubMed  Google Scholar 

  6. U.S. DOE; USCAR; Shell; BP; Conoco Phillips; Chevron; Exxon Mobil; The FreedomCAR and Fuel Partnership Multi-Year Research, Development and Demonstration Plan. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/storage.pdf (2009).

  7. H. Kawano, A. Tanaka, S. Sugimoto, T. Iseki, Y. Zhu, M. Wada, and M. Sasao (2000). Rev. Sci. Instrum. 71, 853.

    Article  CAS  Google Scholar 

  8. A. V. Talyzin, Y. M. Shulga, and A. Jacob (2004). Appl. Phys. A: Mater. Sci. Process. 78, 1005.

    Article  CAS  Google Scholar 

  9. A. V. Talyzin, Y. O. Tsybin, T. M. Schaub, P. Mauron, Y. M. Shulga, A. Zuttel, B. Sundqvist, and A. G. Marshall (2005). J. Phys. Chem. B 109, 12742.

    Article  CAS  PubMed  Google Scholar 

  10. E. L. Brosha, J. Davey, F. H. Garzon, Gottesfeld, and S. Irreversible (1999). J. Mater. Res. 14, 2138.

    Article  CAS  Google Scholar 

  11. S. M. Luzan, Y. O. Tsybin, and A. V. Talyzin (2011). J. Phys. Chem. C 115, 11484.

    Article  CAS  Google Scholar 

  12. A. V. Talyzin, B. Sundqvist, Y. M. Shulga, A. A. Peera, P. Imus, and W. E. Billupsn (2004). Chem. Phys. Lett. 400, 112.

    Article  CAS  Google Scholar 

  13. N. Wang and J. Zhang (2006). J. Phys. Chem. A 110, 6276.

    Article  CAS  PubMed  Google Scholar 

  14. Q. Sun, P. Jena, Q. Wang, and M. Marquez (2006). J. Am. Chem. Soc. 128, 9741.

    Article  CAS  PubMed  Google Scholar 

  15. G. Kubas (2001). J. Organomet. Chem. 635, 37.

    Article  CAS  Google Scholar 

  16. J. Niu, B. K. Rao, and P. Jena (1992). Phys. Rev. Lett. 68, 2277.

    Article  CAS  PubMed  Google Scholar 

  17. J. A. Teprovich Jr., M. S. Wellons, R. Lascola, S.-J. Hwang, P. A. Ward, R. N. Compton, and R. Zidan (2012). Nano Lett. 12, 582.

    Article  CAS  PubMed  Google Scholar 

  18. Q. Wang and P. Jena (2012). J. Phys. Chem. Lett. 3, 1084.

    Article  CAS  PubMed  Google Scholar 

  19. M. Anafcheh and F. Naderi (2018). Int. J. Hydrogen Energy 43, 12271–12277.

    Article  CAS  Google Scholar 

  20. Y.-Z. Tan, S.-Y. Xie, R.-B. Huang, and L.-S. Zheng (2009). Nature Chemistry 1, 450.

    Article  CAS  PubMed  Google Scholar 

  21. H. W. Kroto (1987). Nature 329, 529.

    Article  CAS  Google Scholar 

  22. P. W. Fowler and D. E. Manolopoulos An Atlas of Fullerenes (Clarendon Press, Oxford, 1995).

    Google Scholar 

  23. T. G. Schmalz, W. A. Seitz, D. J. Klein, and G. E. Hite (1988). J. Am. Chem. Soc. 110, 1113.

    Article  CAS  Google Scholar 

  24. E. Albertazzi, A. C. Domene, B. P. W. Fowler, B. T. Heine, B. G. Seifert, C. C. Van Alsenoyd, and F. Zerbettoe (1999). Phys. Chem. Chem. Phys. 1, 2913.

    Article  CAS  Google Scholar 

  25. D. Moran, F. Stahl, E. D. Jemmis, H. F. Schaefer, and Pv R Schleyer (2002). J. Phys. Chem. A 106, 5144.

    Article  CAS  Google Scholar 

  26. Z. F. Chen, H. J. Jiao, D. Moran, A. Hirsch, W. Thiel, and Pv R Schleyer (2003). J. Phys. Chem. A 107, 2075.

    Article  CAS  Google Scholar 

  27. Y.-P. An, C.-L. Yang, M.-S. Wang, X.-G. Ma, and D.-H. Wang (2010). Current Applied Physics 10, 260.

    Article  Google Scholar 

  28. M. Buhl and A. Hirsch (2001). Chem. Rev. 101, 1153.

    Article  CAS  PubMed  Google Scholar 

  29. K. Kikuchi, N. Nakahara, T. Wakabayashi, S. Suzuki, H. Shiromaru, Y. Miyake, K. Saito, I. Ikemoto, M. Kainosho, and Y. Achiba (1992). Nature 357, 142.

    Article  CAS  Google Scholar 

  30. C. Piskoti, J. Yarger, and A. Zettl (1998). Nature 393, 771.

    Article  CAS  Google Scholar 

  31. B. Hong (2006). J. Chem. Phys. 124, 144108.

    Article  CAS  PubMed  Google Scholar 

  32. Pv R Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. V. E. Hommes (1996). J. Am. Chem. Soc. 118, 6317.

    Article  CAS  PubMed  Google Scholar 

  33. Y. Zhao and D. G. Truhlar (2008). Theor. Chem. Account. 120, 215.

    Article  CAS  Google Scholar 

  34. P. C. Hariharan and J. A. Pople (1974). Mol. Phys. 27, 209.

    Article  CAS  Google Scholar 

  35. S. Osuna and K. N. Houk (2009). Chem. Eur. J. 15, 13219.

    Article  CAS  PubMed  Google Scholar 

  36. R. Ghafouri and F. Ektefa (2015). Struct. Chem. 26, 507.

    Article  CAS  Google Scholar 

  37. M. Anafcheh and R. Ghafouri (2014). Physica E 56, 351.

    Article  CAS  Google Scholar 

  38. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery (1993). J. Comput. Chem. 14, 1347.

    Article  CAS  Google Scholar 

  39. M. S. Gordon and M. W. Schmidt Advances in electronic structure theory: GAMESS a decade later. in C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria (eds.), Theory and Applications of Computational Chemistry: The First Forty Years (Elsevier, Amsterdam, 2005).

    Google Scholar 

  40. Y. F. Chang, J. P. Zhang, H. Sun, B. Hong, Z. An, and R. S. Wang (2005). Int. J. Quantum Chem. 105, 142.

    Article  CAS  Google Scholar 

  41. H. Zettergren, M. Alcamí, and F. Martin (2008). Chem. Phys. Chem. 9, 861.

    Article  CAS  PubMed  Google Scholar 

  42. G. E. Scuseria (1991). Chem. Phys. Lett. 180, 451.

    Article  CAS  Google Scholar 

  43. D. R. McKenzie, C. A. Davis, D. J. H. Cockayne, D. A. Muller, and A. M. Vassallo (1992). Nature 355, 622.

    Article  CAS  Google Scholar 

  44. K. Hedberg, L. Hedberg, D. S. Bethune, C. A. Brown, H. C. Dorn, R. D. Johnson, and M. Vries (1991). Science 254, 410.

    Article  CAS  PubMed  Google Scholar 

  45. D.-L. Wang, H.-L. Xu, Z.-M. Su, and D.-Y.n Hou (2011). Comput. Theor. Chem. 978, 166.

    Article  CAS  Google Scholar 

  46. H.-S. Wu, X.-H. Xu, and H. Jiao (2004). J. Phys. Chem. A 108, 3813.

    Article  CAS  Google Scholar 

  47. A. E. Reed, L. A. Curtiss, and F. Weinhold (1988). Chem. Rev. 88, 899.

    Article  CAS  Google Scholar 

  48. A. E. Reed, R. B. Weinstock, and F. Weinhold (1985). J. Chem. Phys. 83, 735.

    Article  CAS  Google Scholar 

  49. S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553.

    Article  CAS  Google Scholar 

  50. Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, and Pv R Schleyer (2005). Chem. Rev. 105, 3842.

    Article  CAS  PubMed  Google Scholar 

  51. G. Sun, M. C. Nicklaus, and R.-H. Xie (2005). J. Phys. Chem. A 109, 4617.

    Article  CAS  PubMed  Google Scholar 

  52. H. Kietzmann, R. Rochow, G. Ganteför, W. Eberhardt, K. Vietze, G. Seifert, and P. W. Fowler (1998). Phys. Rev. Lett. 81, 5378.

    Article  CAS  Google Scholar 

  53. X. Lu and Z. Chen (2005). Chem. Rev. 105, 3643.

    Article  CAS  PubMed  Google Scholar 

  54. X. Lu, Z. Chen, W. Thiel, Pv R Schleyer, R. Huang, and L. Zheng (2004). J. Am. Chem. Soc. 126, 14871.

    Article  CAS  PubMed  Google Scholar 

  55. M. Bühl (1998). Chem. Eur. J. 4, 734.

    Article  Google Scholar 

  56. T. Sternfeld, C. Thilgen, R. E. Hoffman, M. R. C. Heras, F. Diederich, F. Wudl, L. T. Scott, J. Mack, and M. Rabinovitz (2002). J. Am. Chem. Soc. 124, 5734.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge for the financial support from the Research Council of Alzahra University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Anafcheh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anafcheh, M. Li-Decorated Fullerenes: A DFT Study. J Clust Sci 30, 69–76 (2019). https://doi.org/10.1007/s10876-018-1465-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1465-4

Keywords

Navigation