Skip to main content
Log in

Structure–Property Relationship and Systematic Study of a Series of Terpyridine Based Nonlinear Optical Compounds: DFT Computation of Interactive Design

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The objective of this research work is to study the nonlinear optical (NLO) response of terpyridine ligand complexes. Terpyridine ligand based compounds were studied through quantum chemical calculations by using B3LYP/6-31 g (d,p) basis sets. Density functional theory (DFT) calculations were performed to examine nonlinear optical properties of these newly designed compounds. Triphenylamine as electron donor and terpyridine ligand as an electron acceptor were connected directly. The π-spacers were also used to connect the donor and acceptor to increase conjugation. Preparation and characterization of novel compounds or materials for NLO, especially for second harmonic generation (SHG), based on hydrogen-bonded compounds of organic nitrogen containing bases such as terpyridine is used in this research work. Terpyridine ligand has ability to stabilize the complexes. Chelation and supramolecular organization play key role in designing new second-order NLO materials/compounds. NLO compounds have emerged as one of the most attractive fields of current research in view of their vital applications in areas like optical modulation, optical switching, optical logic, frequency shifting and optical data storage for the developing technologies in telecommunications and in efficient signal processing. These newly designed chromophore/compounds show high thermal stability and large optical nonlinearity. In studied compounds dye-5 has its maximum NLO response calculated to be 1967.23 a.u.

Graphical Abstract

The computed βtot values increase by increasing conjugation bridge along with the incorporation of an electron acceptor (F) at the end of terpyridine ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. P. Costes, J. F. Lamere, C. Lepetit, P. G. Lacroix, F. Dahan, and K. Nakatani (2005). Inorg. Chem. 44, (6), 1973–1982.

    Article  CAS  PubMed  Google Scholar 

  2. S. Di Bella and I. Fragalà (2000). Synth. Met. 115, (1), 191–196.

    Article  Google Scholar 

  3. D. J. Williams (1984). Angewandte Chemie International Edition in English 23, (9), 690–703.

    Article  Google Scholar 

  4. P. Günter Nonlinear Optical Effects and Materials (Springer, Berlin, 2012).

    Google Scholar 

  5. P. N. Prasad and D. J. Williams Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).

    Google Scholar 

  6. D. S. Chemla Nonlinear Optical Properties of Organic Molecules and Crystals (Elsevier, Amsterdam, 2012).

    Google Scholar 

  7. M. Drozd and M. Marchewka (2005). J. Mol. Struct: Theochem 716, (1), 175–192.

    Article  CAS  Google Scholar 

  8. M. R. S. A. Janjua (2017). J. Iran. Chem. Soc. 1–14.

  9. M. R. S. A. Janjua, M. Amin, M. Ali, B. Bashir, M. U. Khan, M. A. Iqbal, W. Guan, L. Yan, and Z. M. Su (2012). Eur. J. Inorg. Chem. 2012, (4), 705–711.

    Article  CAS  Google Scholar 

  10. M. R. S. A. Janjua, M. U. Khan, B. Bashir, M. A. Iqbal, Y. Song, S. A. R. Naqvi, and Z. A. Khan (2012). Comp. Theor. Chem. 994, 34–40.

    Article  CAS  Google Scholar 

  11. K. D. Singer, J. E. Sohn, L. King, H. Gordon, H. Katz, and C. Dirk (1989). JOSA B 6, (7), 1339–1350.

    Article  CAS  Google Scholar 

  12. J. Luo, M. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen, S.-H. Jang, L. R. Dalton, and A. K.-Y. Jen (2004). J. Phys. Chem. B 108, (25), 8523–8530.

    Article  CAS  Google Scholar 

  13. M. R. S. A. Janjua, Z.-M. Su, W. Guan, C.-G. Liu, L.-K. Yan, P. Song, and G. Maheen (2010). Aust. J. Chem. 63, (5), 836–844.

    Article  CAS  Google Scholar 

  14. M. R. S. A. Janjua, W. Guan, L. Yan, Z.-M. Su, M. Ali, and I. H. Bukhari (2010). J. Mol. Graphics Modell. 28, (8), 735–745.

    Article  CAS  Google Scholar 

  15. J.-M. Lehn (1993). Science 260, 1762.

    Article  CAS  PubMed  Google Scholar 

  16. Guoqiang Shi, Ying Wang, Fangfang Zhang, Bingbing Zhang, Zhihua Yang, Xueling Hou, Shilie Pan, and Kenneth R. Poeppelmeier (2017). J. Am. Chem. Soc. 139, 10645–10648.

    Article  CAS  PubMed  Google Scholar 

  17. Xuefei Wang, Ying Wang, Bingbing Zhang, Fangfang Zhang, Zhihua Yang, and Shilie Pan (2017). Angew. Chem. Int. Ed. 56, 14119–14123.

    Article  CAS  Google Scholar 

  18. Bingbing Zhang, Guoqiang Shi, Zhihua Yang, Fangfang Zhang, and Shilie Pan (2017). Angew. Chem. Int. Ed. 56, 3916–3919.

    Article  CAS  Google Scholar 

  19. Ying Wang, Bingbing Zhang, Zhihua Yang, and Shilie Pan (2018). Angew. Chem. Int. Ed. 57, 2150–2154.

    Article  CAS  Google Scholar 

  20. Wu Hongping, Yu Hongwei, Zhihua Yang, Xueling Hou, Su Xin, Shilie Pan, Kenneth R. Poeppelmeier, and James M. Rondinelli (2013). J. Am. Chem. Soc. 135, 4215–4218.

    Article  CAS  Google Scholar 

  21. Wu Hongping, Shilie Pan, Kenneth R. Poeppelmeier, Hongyi Li, Dianzeng Jia, Zhaohui Chen, Xiaoyun Fan, Yun Yang, James M. Rondinelli, and Haosu Luo (2011). J. Am. Chem. Soc. 133, 7786–7790.

    Article  CAS  Google Scholar 

  22. Xiaoyu Dong, Qun Jing, Yunjing Shi, Zhihua Yang, Shilie Pan, Kenneth R. Poeppelmeier, Joshua Young, and James M. Rondinelli (2015). J. Am. Chem. Soc. 137, 9417–9422.

    Article  CAS  PubMed  Google Scholar 

  23. Yu Hongwei, Wu Hongping, Shilie Pan, Zhihua Yang, Su Xin, and Fangfang Zhang (2012). J. Mater. Chem. 22, 9665–9670.

    Article  CAS  Google Scholar 

  24. Ying Wang and Shilie Pan (2016). Coord. Chem. Rev. 323, 15–35.

    Article  CAS  Google Scholar 

  25. Xuefei Wang, Ying Wang, Bingbing Zhang, Fangfang Zhang, Zhihua Yang, and Shilie Pan (2017). Angew. Chem. Int. Ed. 129, 14307–14311.

    Article  Google Scholar 

Download references

Acknowledgements

M.R.S.A. Janjua would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through Project No. SR161009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ramzan Saeed Ashraf Janjua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janjua, M.R.S.A. Structure–Property Relationship and Systematic Study of a Series of Terpyridine Based Nonlinear Optical Compounds: DFT Computation of Interactive Design. J Clust Sci 30, 45–51 (2019). https://doi.org/10.1007/s10876-018-1458-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1458-3

Keywords

Navigation