Skip to main content
Log in

MnO2 Nanoparticles and Carbon Nanofibers Nanocomposites with High Sensing Performance Toward Glucose

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

By combining the advantages of manganese dioxide nanoparticles (MnO2 NPs) and carbon nanofibers (CNFs), a biosensing electrode surface as a high-performance enzyme biosensor is designed in this work. MnO2 NPs and CNFs nanocomposites (MnO2–CNFs) were prepared by using a simple hydrothermal method and then were characterized by scanning electron microscopy, powder X-ray diffraction, fourier transform infrared spectroscopy, energy dispersive spectrometry and electrochemisty. The results showed that MnO2 NPs are uniformly attached to the surface of CNFs. Meanwhile, the MnO2–CNFs nanocomposites as a supporting matrix can provide an efficient and advantageous platform for electrochemical sensing applications. On the basis of the improved sensitivity of MnO2–CNFs modified electrode toward H2O2 at low overpotential, a MnO2–CNFs based glucose biosensor was fabricated by monitoring H2O2 produced by an enzymatic reaction between glucose oxidase and glucose. The constructed biosensor exhibited a linear calibration graph for glucose in a concentration range of 0.08–4.6 mM and a low detection limit of 0.015 mM. In addition, the biosensor showed other excellent characteristics, such as high sensitivity and selectivity, short response time, and the relative low apparent Michaelis–Menten constant. Analysis of human urine spiked with glucose at different concentration levels yielded recoveries between 101.0 and 104.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Liu, M. K. Wang, F. Zhao, Z. A. Xu, and S. J. Dong (2005). Biosens. Bioelectron. 21, 984.

    Article  CAS  PubMed  Google Scholar 

  2. A. Chalupniak, A. Merkoci, and A. C. S. Appl (2017). Mater. Interfaces 9, 44766.

    Article  CAS  Google Scholar 

  3. V. Vamvakaki, K. Tsagaraki, and N. Chaniotakis (2006). Anal. Chem. 78, 5538.

    Article  CAS  PubMed  Google Scholar 

  4. L. Wu, X. J. Zhang, and H. X. Ju (2007). Anal. Chem. 79, 453.

    Article  CAS  PubMed  Google Scholar 

  5. C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu (2009). Anal. Chem. 81, 2378.

    Article  CAS  PubMed  Google Scholar 

  6. W. Song, D. W. Li, Y. T. Li, Y. Li, and Y. T. Long (2011). Biosens. Bioelectron. 26, 3181.

    Article  CAS  PubMed  Google Scholar 

  7. A. Arvinte, F. Valentini, A. Radoi, F. Arduini, E. Tamburri, L. Rotariu, G. Palleschi, and C. Bala (2007). Electroanalysis 19, 1455.

    Article  CAS  Google Scholar 

  8. Y. Liu, H. Q. Hou, and T. Y. You (2008). Elactroanalysis 20, 1708.

    Article  CAS  Google Scholar 

  9. L. Wu, X. J. Zhang, and H. X. Ju (2007). Analyst 132, 406.

    Article  CAS  PubMed  Google Scholar 

  10. V. Vamvakaki and N. A. Chaniotakis (2007). Sens. Actuators B 126, 193.

    Article  CAS  Google Scholar 

  11. Z. Z. Li, X. L. Cui, J. S. Zheng, Q. F. Wang, and Y. H. Lin (2007). Anal. Chim. Acta 597, 238.

    Article  CAS  PubMed  Google Scholar 

  12. Y. Liu, J. S. Huang, H. Q. Hou, and T. Y. You (2008). Electrochem. Commun. 10, 1431.

    Article  CAS  Google Scholar 

  13. L. Wu, X. J. Zhang, and H. X. Ju (2007). Biosens. Bioelectron. 23, 479.

    Article  CAS  PubMed  Google Scholar 

  14. X. B. Lu, J. H. Zhou, W. Lu, Q. Liu, and J. H. Li (2008). Biosens. Bioelectron. 23, 1236.

    Article  CAS  PubMed  Google Scholar 

  15. C. Hao, L. Ding, X. J. Zhang, and H. X. Ju (2007). Anal. Chem. 79, 4442.

    Article  CAS  PubMed  Google Scholar 

  16. J. S. Huang, D. W. Wang, H. Q. Hou, and T. Y. You (2008). Adv. Funct. Mater. 18, 441.

    Article  CAS  Google Scholar 

  17. V. Vamvakaki, M. Hatzimarinaki, and N. A. Chaniotakis (2008). Anal. Chem. 80, 5970.

    Article  CAS  PubMed  Google Scholar 

  18. Q. Guo, D. Liu, X. Zhang, L. Li, H. Hou, O. Niwa, and T. Y. You (2014). Anal. Chem. 86, 5898.

    Article  CAS  PubMed  Google Scholar 

  19. V. E. Henrich and P. A. Cox, Cambridge University Press: Cambridge, UK, 1994.

  20. S. J. Yao, S. Yuan, and J. H. Xu (2006). Y. wang, J. L. Luo and S. S. Hu. Appl. Clay Sci. 33, 35.

    Article  CAS  Google Scholar 

  21. Y. H. Lin, X. L. Cui, and L. L. Yu (2005). Electrochem. Commun. 7, 166.

    Article  CAS  Google Scholar 

  22. A. J. Wang, P. P. Zhang, Y. F. Li, J. J. Feng, W. J. Dong, and X. Y. Liu (2011). Microchim. Acta 175, 31.

    Article  CAS  Google Scholar 

  23. Y. H. Bai, Y. Du, J. J. Xu, and H. Y. Chen (2007). Electrochem. Commun. 9, 2611.

    Article  CAS  Google Scholar 

  24. L. Han, C. Shao, B. Liang, A. Liu, and A. C. S. Appl (2016). Mater. Interfaces 8, 13768.

    Article  CAS  Google Scholar 

  25. E. A. Dontsova, Y. S. Zeifman, I. A. Budashov, A. V. Eremenko, S. L. Kalnov, and I. N. Kurochkin (2011). Sens. Actuators B Chem. 159, 261.

    Article  CAS  Google Scholar 

  26. B. Xu, M. L. Ye, Y. X. Yu, and W. D. Zhang (2010). Anal. Chim. Acta 674, 20.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Li, J. Zhang, H. Zhu, F. Yang, and X. Yang (2010). Electrochim. Acta 55, 5123.

    Article  CAS  Google Scholar 

  28. A. J. Paleo, P. Staiti, A. Brigandì, F. N. Ferreira, A. M. Rocha, and F. Lufrano (2018). Energy Storage Mater. 12, 204.

    Article  Google Scholar 

  29. Y. Yang, S. Lee, D. E. Brown, H. Zhao, X. Li, D. Jiang, S. Hao, Y. Zhao, D. Cong, X. Zhang, and Y. Ren (2016). Electrochim. Acta 211, 524.

    Article  CAS  Google Scholar 

  30. Z. Zeng, W. Zhang, Y. Liu, P. Lu, and J. Wei (2017). Electrochim. Acta 256, 232.

    Article  CAS  Google Scholar 

  31. H. Yang, Y. Yan, Y. Liu, F. Zhang, R. Zhang, Y. Meng, M. Li, S. Xie, B. Tu, and D. Zhao (2004). J. Phys. Chem. B 108, 17320.

    Article  CAS  Google Scholar 

  32. K. Gong, P. Yu, L. Su, S. Xiong, and L. Mao (1882). J. Phys. Chem. C 2007, 111.

    Google Scholar 

  33. F. Cheng, J. Zhao, W. Song, C. Li, H. Ma, J. Chen, and P. Shen (2006). Inorg. Chem. 45, 2038.

    Article  CAS  PubMed  Google Scholar 

  34. W. Tian, H. Yang, X. Fan, and X. Zhang (2011). J. Hazard. Mater. 188, 105.

    Article  CAS  PubMed  Google Scholar 

  35. M. Sun, B. Lan, T. Lin, G. Cheng, F. Ye, L. Yu, X. Cheng, and X. Zheng (2013). CrystEngComm 15, 7010.

    Article  CAS  Google Scholar 

  36. M. Zhi, A. Manivannan, F. Meng F, N. Wu, J Power Sources, 2012, 208, 345.

  37. S. Kubota, H. Nishikiori, N. Tanaka, M. Endo, and T. Fujii (2005). J. Phys. Chem. B 109, 23170.

    Article  CAS  PubMed  Google Scholar 

  38. Q. Bao, S. Bao, C. M. Li, X. Qi, C. Pan, J. Zang, Z. Lu, Y. Li, D. Y. Tang, S. Zhang, and K. Lian (2008). J. Phys. Chem. C 112, 3612.

    Article  CAS  Google Scholar 

  39. S. Jana, S. Basu, S. Pande, and S. Kumar (2007). Ghosh and T. Pal. J. Phys. Chem. C 111, 16272.

    Article  CAS  Google Scholar 

  40. J. Zhu, J. He, and A. C. S. Appl (2012). Mater. Interfaces 4, 1770.

    Article  CAS  Google Scholar 

  41. M. V. Ananth, S. Pethkar, and K. Dakshinamurthi (1998). J. Power Sources 75, 278.

    Article  CAS  Google Scholar 

  42. W. Zhang, Z. Zeng, and J. Wei (2017). J. Phys. Chem. C 121, 18635.

    Article  CAS  Google Scholar 

  43. Z. Zeng, Y. Liu, W. Zhang, H. Chevva, and J. Wei (2017). J. Power Sources 358, 22.

    Article  CAS  Google Scholar 

  44. Y. F. Tang, B. L. Allen, D. R. Kauffman, and A. Star (2009). J. Am. Chem. Soc. 131, 13200.

    Article  CAS  PubMed  Google Scholar 

  45. S. B. Hocevar and B. Ogorevc (2004). K. Schachl amd K. Kalcher. Electroanalysis 16, 1711.

    Article  CAS  Google Scholar 

  46. X. Xu, S. Jiang, Z. Hu, and S. Liu (2010). ACS Nano 4, 4292.

    Article  CAS  PubMed  Google Scholar 

  47. L. Zhang, S. Yuan, L. Yang, Z. Fang, and G. Zhao (2013). Microchim. Acta 180, 627.

    Article  CAS  Google Scholar 

  48. R. A. Kamin and G. S. Wilson (1980). Anal. Chem. 52, 1198.

    Article  CAS  Google Scholar 

  49. G. B. Xu, X. Q. Liu, L. H. Shi, W. X. Niu, and H. J. Li (1887). Biosens. Bioelectron. 2008, 23.

    Google Scholar 

  50. T. H. Wang, C. C. Li, Y. L. Liu, L. M. Li, Z. F. Du, S. J. Xu, M. Zhang, and X. M. Yin (2008). Talanta 77, 455.

    Article  CAS  PubMed  Google Scholar 

  51. B. A. Gregg and A. Heller (1990). Anal. Chem. 62, 258.

    Article  CAS  PubMed  Google Scholar 

  52. B. Akkaya, B. Çakiroğlu, and M. Özacar (2018). ACS Sustain. Chem. Eng. 6, 3805.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (21001004), the Natural Science Foundation of the Anhui Higher Education Institutions (Grant No. KJ2016A277), the Innovation Funds of Anhui Normal University (Grant 741606), Ph.D. Research Startup Funds of Anhui Normal University (2018XJJ-751862), the Key Laboratory of Functional Molecular Solids, Ministry of Education and Anhui Laboratory of Molecule-Based Materials (16005) and the Training Programs of Innovation and Entrepreneurship for Undergraduates (201610370471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, Q., Han, X. et al. MnO2 Nanoparticles and Carbon Nanofibers Nanocomposites with High Sensing Performance Toward Glucose. J Clust Sci 29, 1089–1098 (2018). https://doi.org/10.1007/s10876-018-1421-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1421-3

Keywords

Navigation