Skip to main content

Advertisement

Log in

Purification and Utilization of Gum from Terminalia Catappa L. for Synthesis of Curcumin Loaded Nanoparticle and Its In Vitro Bioactivity Studies

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, polysaccharide of Terminalia catappa L. was extracted and characterized using UV–Vis spectroscopy and FTIR spectroscopy. The polysaccharide was tested for its antibacterial activity, swarming motility, antibiofilm activity, anticancer activity and antioxidant activity. Further, the polysaccharide was subjected for carboxymethylation and chelated using Tri Sodium Tri Meta phosphate to form nanocarriers. The nanocarriers were loaded with curcumin and were characterized using FTIR, SEM, EDAX, TEM and AFM. The curcumin nanocarriers were evaluated for its drug encapsulation efficiency, drug release, invitro anticancer activity and also subjected for cellular uptake studies. The polysaccharide was found to be producing a stable and non hemotoxic nanocarrier, which could encapsulate drug and release drug efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Bhaskar, F. Tian, T. Stoeger, W. Kreyling, J. M. de la Fuente, V. Grazú, P. Borm, G. Estrada, V. Ntziachristos, and D. Razansky (2010). Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood–brain barrier: perspectives on tracking and neuroimaging. PartFibreToxicol. 7, 3.

    Google Scholar 

  2. O. Flores, S. Santra, C. Kaittanis, R. Bassiouni, A. S. Khaled, A. R. Khaled, J. Grimm, and J. M. Perez (2017). PSMA-targeted theranostic nanocarrier for prostate cancer. Theranostics. 7, (9), 2477–2494.

    Article  PubMed  PubMed Central  Google Scholar 

  3. K. Maier-Hauff, R. Rothe, R. Scholz, U. Gneveckow, P. Wust, B. Thiesen, A. Feussner, A. V. Deimling, N. Waldoefner, R. Felix, and A. Jordan (2007). Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of afeasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81, (1), 53–60.

    Article  CAS  PubMed  Google Scholar 

  4. G. Benelli, C.M. Lukehart (2017). Special Issue: Applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci. 28, 1–2. https://doi.org/10.1007/s10876-017-1165-5

    Article  CAS  Google Scholar 

  5. G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci. 28, 3–10.

    Article  CAS  Google Scholar 

  6. G. Benelli (2016). Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microb Technol. 95, 58–68.

    Article  CAS  PubMed  Google Scholar 

  7. S. Parveen, R. Misra, and S. K. Sahoo (2012). Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8, (2) 147,

    Article  CAS  PubMed  Google Scholar 

  8. J. Clark, E. M. Singer, D. R. Korns, S. S. Smith (2004). Design and analysis of nanoscale bioassemblies. Biotechniques. 36, (6), 992–6, 998–1001.

    Article  CAS  PubMed  Google Scholar 

  9. J. A. Champion, Y. K. Katare, and S. Mitragotri (2007). Making polymeric micro- and nanoparticles of complex shapes. Proceedings of the National Academy of Sciences of the United States of America. 104, (29), 11901–11904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. MisDing and Z. Li (2017). A review of drug release mechanisms from nanocarrier systems. Materials Science & Engineering. C Mater Biol Appl. 76, 1440–1453.

    Article  CAS  Google Scholar 

  11. J. Huang, Y. Xue, N. Cai, H. Zhang, K. Wen, X. Luo, S. Long, and F. Yu (2015). Efficient reduction and pH co-triggered DOX-loaded magnetic nanogel carrier using disulphide crosslinking. Mater Sci Eng C Mater Biol Appl. 46, 41–51.

    Article  CAS  PubMed  Google Scholar 

  12. V. P. Torchilin (2004). Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 61, (19–20), 2549–2559.

    Article  CAS  PubMed  Google Scholar 

  13. A. R. Nicholas, M. J. Scott, N. I. Kennedy, and M. N. Jones (2000). Effect of grafted polyethylene glycol (PEG) on the size, encapsulation efficiency and permeability of vesicles. BiochimBiophys Acta. 1463, (1), 167–178.

    CAS  Google Scholar 

  14. K. Thanzami, C. Malsawmtluangi, H. Lalhlenmawia, T. V. Seelan, S. Palanisamy, R. Kandasamy, and L. Pachuau (2015). Characterization and in vitro antioxidant activity of AlbiziastipulataBoiv. gum exudates. Int J Biol Macromol. 80, 231–239.

    Article  CAS  PubMed  Google Scholar 

  15. P. D. Choudhary, H. A. Pawar (2014). Recently Investigated Natural Gums and Mucilages as Pharmaceutical Excipients: An Overview. J Pharm. (ii), 1–9.

    Article  CAS  Google Scholar 

  16. D. Verbeken, S. Dierckx, and K. Dewettinck (2003). Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol. 63, (1), 10–21.

    Article  CAS  PubMed  Google Scholar 

  17. F. Khorram, A. Ramezanian, and S. M. H. Hosseini (2017). Shellac, gelatin and Persian gum as alternative coating for orange fruit. Sci Hort. 225, 22–28.

    Article  CAS  Google Scholar 

  18. I. Khan, K. Saeed, I. Khan (2017). Nanoparticles: properties, applications and toxicities. Arab J Chem. In Press. https://doi.org/10.1016/j.rabjc.2017.05.011

  19. M. Hadian, S. M. H. Hosseini, A. Farahnaky, and G. Z. Mesbahi (2017). Optimization of functional nanoparticles formation in associative mixture of water-soluble portion of Farsi gum and beta-lactoglobulin. Int J BiolMacromol. 102, 1297–1303.

    Article  CAS  Google Scholar 

  20. R. Sharma and V. Rana (2017). Effect of carboxymethylation on rheological and drug release characteristics of Terminalia catappa gum. CarbohydrPolym. 175, 728–738.

    CAS  Google Scholar 

  21. Abhishek Rimpy and M. Ahuja (2017). Evaluation of carboxymethyl moringa gum as nanometric carrier. CarbohydrPolym. 174, 896–903.

    CAS  Google Scholar 

  22. S. Ghayempour, M. Montazer, and M. Mahmoudi Rad (2016). Encapsulation of Aloe vera extract into natural Tragacanth Gum as a novel green wound healing product. Int J Biol Macromol. 93, 344–349.

    Article  CAS  PubMed  Google Scholar 

  23. F. F. Simas-Tosin, R. R. Barraza, D. Maria-Ferreira, M. F. Werner, C. H. Baggio, R. Wagner, F. R. Smiderle, E. R. Carbonero, G. L. Sassaki, M. Iacomini, and P. A. Gorin (2014). Glucuronoarabinoxylan from coconut palm gum exudate: chemical structure and gastroprotective effect. Carbohydr Polym. 107, 65–71.

    Article  CAS  PubMed  Google Scholar 

  24. V. K. Sharma and B. Mazumdar (2013). Feasibility and characterization of gummy exudate of Cochlospermum religiosum as pharmaceutical excipient. Ind Crops Prod. 50, 776–786.

    Article  CAS  Google Scholar 

  25. E. K. Selvi, J. M. Kumar, and R. B. Sasidhar (2017). Anti-proliferative activity of Gum kondagogu (Cochlospermum gossypium)-gold nanoparticle constructs on B16F10 melanoma cells: An in vitro model. Bioact Carbohydr Diet Fibre. 11, 38–47.

    Article  CAS  Google Scholar 

  26. A. Rezaei, H. Tavanai, and A. Nasirpour (2016). Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin. Int J Biol Macromol. 91, 536–543.

    Article  CAS  PubMed  Google Scholar 

  27. F. Bouaziz, M. Ben Romdhane, C. BoissetHelbert, L. Buon, F. Bhiri, S. Bardaa, D. Driss, M. Koubaa, A. Fakhfakh, Z. Sahnoun, F. Kallel, N. Zghal, and S. EllouzChaabouni (2014). Healing efficiency of oligosaccharides generated from almond gum (Prunus amygdalus) on dermal wounds of adult rats. J Tissue Viability. 23, (3), 98–108.

    Article  PubMed  Google Scholar 

  28. F. Bouaziz, M. Koubaa, K. Ben Jeddou, F. Kallel, C. BoissetHelbert, A. Khelfa, R. EllouzGhorbel, S. EllouzChaabouni. Water-soluble polysaccharides and hemicelluloses from almond gum: Functional and prebiotic properties. Int J Biolmacromol. 93, 359–368.

    Article  CAS  PubMed  Google Scholar 

  29. F. Bouaziza, M. Koubaa, M. Neifar, S. Z. Ellouzi, S. Besbes, F. Chaaria, A. Kamoune, M. Chaabounie, S. E. Chaabouni, and R. E. Ghorbela (2015). Feasibility of using almond gum as coating agent to improve the quality of fried potato chips: evaluation of sensorialproperties. LWT—Food Sci Technol. 65, 800–807.

    Article  CAS  Google Scholar 

  30. N. Mahfoudhi, M. Sessa, M. Chouaibi, G. Ferrari, F. Donsì, and S. Hamdi (2014). Assessment of emulsifying ability of almond gum in comparison with gum arabic using response surface methodology. Food Hydrocolls. 37, 49–59.

    Article  CAS  Google Scholar 

  31. F. Bouaziz, C. B. Helbertm, M. B. Romdhane, M. Koubaa, F. Bhiri, F. Kallel, F. Chaari, D. Driss, L. Buon, and S. E. Chaabouni (2014). Structural data and biological properties of almond gum oligosaccharide: application to beef meat preservation. Int J Biolmacromol. 72, 472–479.

    Article  CAS  Google Scholar 

  32. S. A. Hussain and V. Jaisankar (2017). An eco-friendly synthesis, characterisation and antibacterial applications of novel almond gum–poly(acrylamide) based hydrogel silver nanocomposite. Polym Test. 62, 154–161.

    Article  CAS  Google Scholar 

  33. G. Dodi, A. Pala, E. Barbu, D. Peptanariu, D. Hritcu, M. I. Popa, and B. I. Tamba (2016). Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in vitro investigations. Mater Sci Eng C Mater Biol Appl. 63, 628–636.

    Article  CAS  PubMed  Google Scholar 

  34. D. G. Ha, S. L. Kuchma, and G. A. O’Toole (2014). Plate-based assay for swarming motility in Pseudomonas aeruginosa. Methods Mol Biol. 1149, 67–72.

    Article  PubMed  PubMed Central  Google Scholar 

  35. G. Rajivgandhi, R. Vijayan, M. Maruthupandy, B. Vaseeharan, N. Manoharan (2018). Antibiofilm effect of Nocardiopsis sp. GRG 1 (KT235640) compound against biofilm forming Gram negative bacteria on UTIs. Microb Pathog. 4010 (18), 30018–4.

  36. I. F. Benzie and J. J. Strain (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 239, (1), 70–76.

    Article  CAS  PubMed  Google Scholar 

  37. M. Maizura, A. Aminah, and W. M. Wan Aida (2001). Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. Int Food Res J. 18, 529–534.

    Google Scholar 

  38. M. R. Saha, S. M. R. Hasan, R. Akter, M. M. Hossain, M. S. Alam, M. A. Alam, M. E. H. Mazumder. In vitro free radical scavenging activity of methanol extract of the leaves of Mimusopselengilinn. J. Bangl. Vet. Med. 6 (2), 197–202.

  39. A. Anitha, V. G. Deepagan, V. V. D. Rani, D. Menon, S. V. Nair, and R. Jayakumar (2011). Preparation, characterization, invitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr polym. 84, 1158–1164.

    Article  CAS  Google Scholar 

  40. N. S. Rejinold, M. Muthunarayanan, V. V. Divyarani, P. R. Sreerekha, K. P. Chennazhi, S. V. Nair, H. Tamura, and R. Jayakumar (2011). Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. J Colloid Interface Sci. 360, (1), 39–51.

    Article  CAS  PubMed  Google Scholar 

  41. G. Dodi, D. Hritcu, and I. M. Popa (2011). Carboxymethylation of guar gum: synthesis and characterization. Cellulose Chem Technol. 45, (3), 171–176.

    CAS  Google Scholar 

  42. A. V. Samrot, T. Jahnavi, Akansha, S. Padmanaban, S. A. Philip, U. Burman, and A. M. Rabel (2016). Chelators influenced synthesis of chitosan- carboxymethyl cellulose micro particles for controlled drug delivery. Appl Nano Sci. 6, 1219–1231.

    Article  CAS  Google Scholar 

  43. A. V. Samrot, Ujjala Burman, Sheryl Ann Philip, N. Shobana, and Kumar Chandrasekaran (2018). Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Inform Med Unlocked. 10, 159–182.

    Article  Google Scholar 

  44. J. Gopal, S. Chun, V. Anthonydasan, S. Jung, B. N. Mwang’ombe, M. Muthu, and I. Sivanesan (2018). Assays evaluating antimicrobial activity of nanoparticles: a myth buster. J Clust Sci. 29, (2), 207–213.

    Article  CAS  Google Scholar 

  45. A. Soriano, F. Marco, J. A. Martínez, E. Pisos, M. Almela, V. P. Dimova, D. Alamo, M. Ortega, J. Lopez, and J. Mensa (2008). Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 46, (2), 193–200.

    Article  CAS  PubMed  Google Scholar 

  46. P. Udompornmongkol and B. H. Chiang (2015). Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. J Biomater Appl. 0, (0), 1–10.

    Google Scholar 

  47. T. Mahendran, P. A. Williams, G. O. Phillips, S. Al-Assaf, and T. C. Baldwin (2008). New insightsinto the structural characteristics of the arabinogalactan-protein (AGP) fraction of gum arabic. J Agric Food Chem. 56, (19), 9269–9276.

    Article  CAS  PubMed  Google Scholar 

  48. A. Rezaei, A. Nasirpour, and H. Tavanai (2016). Fractionation and some physicochemical properties of almond gum (Amygdaluscomunis L.) exudates. Food Hydrocoll. 60, 461–469.

    Article  CAS  Google Scholar 

  49. F. Bouaziz, M. Koubaa, C. B. Helbert, F. Kallel, D. Driss, I. Kacem, R. Ghorbel, and S. E. Chaabouni (2015). Purification, structural data and biological properties of polysaccharide from Prunus amygdalus gum. Int J Food Sci Technol. 50, 578–584.

    Article  CAS  Google Scholar 

  50. V. E. Ooi and F. Liu (2000). Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem. 7, (7), 715–729.

    Article  CAS  PubMed  Google Scholar 

  51. E. Z. Gomaa (2013). In vitro antioxidant, antimicrobial, and antitumor activities of bitter almond and sweet apricot (Prunus armeniaca L.) kernels. Food Sci Biotechnol. 22, (2), 455–463.

    Article  CAS  Google Scholar 

  52. S. M. Bagheri, A. Abdian-Asi, M. T. Moghadam, M. Yadegari, A. Mirjalili, F. Zare-Mohazabieh, and H. Momeni (2017). Antitumor effect of Ferulaassafoetida oleo gum resin against breast cancer induced by 4T1 cells in BALB/c mice. J Ayurveda Integr Med. 8, (3), 152–158.

    Article  PubMed  PubMed Central  Google Scholar 

  53. G. Mhinzi, L. Mghweno, and J. Buchweishaija (2008). Intra-species variation of the properties of gum exudates from two Acacia species of the series Gummiferae. Food Chem. 107, 1407–1412.

    Article  CAS  Google Scholar 

  54. H. Pawar, M. Karde, N. Mundle, P. Jadhav, and K. Mehra (2014). Phytochemical evaluation and curcumin content determination of turmeric rhizomes collected from Bhandara district of Maharashtra (India). Med chem. 4, 588–591.

    Article  CAS  Google Scholar 

  55. D. Griffith, W. Bernt, P. Hole, J. Smith, A. Malloy, B. Carr (2011). Zetapotential measurement of nanoparticles by nanoparticle tracking analysis. NSTI-Nanotech. 1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony V. Samrot.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samrot, A.V., Suvedhaa, B., Sahithya, C.S. et al. Purification and Utilization of Gum from Terminalia Catappa L. for Synthesis of Curcumin Loaded Nanoparticle and Its In Vitro Bioactivity Studies. J Clust Sci 29, 989–1002 (2018). https://doi.org/10.1007/s10876-018-1412-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1412-4

Keywords

Navigation