Skip to main content
Log in

Synthesis of Metallic Silver Nanoparticles by Fluconazole Drug and Gamma Rays to Inhibit the Growth of Multidrug-Resistant Microbes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Here we tailored a methodology, including green synthesis of silver nanoparticles (AgNPs) in aqueous solution using Fluconazole (Fluc.), a broad-spectrum antifungal agent under the influence of gamma rays. AgNPs were characterized by UV–Vis., FTIR, XRD, DLS, and TEM image. Antimicrobial activities of AgNPs, Fluc., and Ag+ were investigated against multidrug-resistant (MDR) bacteria and unicellular fungi. From our results, AgNPs production was found to be dependent on the concentration of Ag+, Fluc. and gamma doses. DLS with TEM image explained the size and shape of AgNPs and were found to be spherical with diameter of 11.65 nm. FTIR analysis indicates that, the hydroxyl, nitrogen and fluoride moiety in Fluc. were responsible for the reduction and binding process. AgNPs possesses antimicrobial activity against all tested microbes more than Ag+. It produced high efficacy against Acinetobacter baumannii (20.0 mm ZOI). AgNPs are synergistically active towards Candida albicans (17.0 mm ZOI). Investigated action mechanisms for AgNPs activity had been discussed. Thereby, owing to its unique features as cost-effective with continued-term stabilization, it can discover potential targets in biomedical applications and infectious diseases control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. F. El-Baz, et al. (2016). J. Basic Microbiol. 56, 531–540.

    Article  CAS  PubMed  Google Scholar 

  2. A. I. El-Batal, et al. (2017). J. Photochem. Photobiol. B 173, 120–139.

    Article  CAS  PubMed  Google Scholar 

  3. G. Benelli (2017). J. Clust. Sci. 28, (1), 11–14.

    Article  CAS  Google Scholar 

  4. G. Benelli and M. Govindarajan (2017). J. Clust. Sci. 28, (1), 287–308.

    Article  CAS  Google Scholar 

  5. G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, (1), 1–2.

    Article  CAS  Google Scholar 

  6. S. Iravani, et al. (2014). Res. Pharm. Sci. 9, (6), 385.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. K. Gopinath, et al. (2017). J. Clust. Sci. 28, (3), 1541–1550.

    Article  CAS  Google Scholar 

  8. M. Govindarajan, M. Nicoletti, and G. Benelli (2016). J. Clust. Sci. 27, 745–761.

    Article  CAS  Google Scholar 

  9. J. M. Khaled, et al. (2017). J. Clust. Sci. 28, (5), 3009–3019.

    Article  CAS  Google Scholar 

  10. J. Li, et al. (2012). Micro Nano Lett. 7, (4), 360–362.

    Article  CAS  Google Scholar 

  11. A. El-Batal, et al. (2013). World Appl. Sci. J. 22, (1), 01–16.

    CAS  Google Scholar 

  12. A. I. El-Batal, et al. (2017). J. Clust. Sci. 28, (3), 1083–1112.

    Article  CAS  Google Scholar 

  13. A. I. El-Batal, et al. (2017). Int. J. Biol. Macromol. 107, 2298–2311.

    Article  CAS  PubMed  Google Scholar 

  14. A. El-Batal, et al. (2013). J. Chem. Pharm. Res. 5, (8), 1–15.

    Google Scholar 

  15. M. A. El-Ghazaly, et al. (2016). Can. J. Physiol. Pharmacol. 95, (2), 101–110.

    Article  CAS  PubMed  Google Scholar 

  16. M. Składanowski, et al. (2017). J. Clust. Sci. 28, (1), 59–79.

    Article  CAS  Google Scholar 

  17. R. R. Banala, V. B. Nagati, and P. R. Karnati (2015). Saudi J. Biol. Sci. 22, (5), 637–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. W. Schreiber, et al. (2003). Invest Ophthalmol Vis Sci 44, (6), 2634–2643.

    Article  PubMed  Google Scholar 

  19. M. Ghorab and A. El-Batal (2002). Boll. Chim. Farm. 141, (2), 110–117.

    CAS  PubMed  Google Scholar 

  20. A. I. El-Batal, et al. (2014). Br. J. Pharm. Res. 4, (11), 1341–1363.

    Article  Google Scholar 

  21. V. Karthika, et al. (2017). J. Photochem. Photobiol. B 167, 189–199.

    Article  CAS  PubMed  Google Scholar 

  22. M. Howarth, et al. (2005). Proc. Natl. Acad. Sci. USA 102, (21), 7583–7588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. I. El-Batal and Mona Tamie (2015). J. Chem. Pharm. Res. 7, 1020–1036.

    CAS  Google Scholar 

  24. A. I. El-Batal, et al. (2012). World Appl. Sci. J. 19, (7), 962–971.

    CAS  Google Scholar 

  25. R. Jagannathan, P. Poddar, and A. Prabhune (2007). J. Phys. Chem. C 111, (19), 6933–6938.

    Article  CAS  Google Scholar 

  26. A. Baraka, et al. (2017). Chem. Pap. 71, (11), 2271–2281.

    Article  CAS  Google Scholar 

  27. A. El-Batal, et al. (2016). J. Chem. Pharm. Res. 8, (4), 934–951.

    CAS  Google Scholar 

  28. A. I. El-Batal, et al. (2015). Biotechnol. Rep. 5, 31–39.

    Article  Google Scholar 

  29. M. Ghorab, et al. (2016). Br. Biotechnol. J. 16, (1), 1–25.

    Article  Google Scholar 

  30. A. El-Batal, et al. (2014). Br. J. Pharm. Res. 4, (21), 2525–2547.

    Article  Google Scholar 

  31. A. I. El-Batal, A.-A. M. Hashem, and N. M. Abdelbaky (2013). SpringerPlus 2, (1), 129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. G. Funke, et al. (1998). J. Clin. Microbiol. 36, (7), 1948–1952.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. P. Venkatachalam, et al. (2017). J. Clust. Sci. 28, (1), 607–619.

    Article  CAS  Google Scholar 

  34. F.-K. Liu, et al. (2007). Mater. Lett. 61, (11), 2402–2405.

    Article  CAS  Google Scholar 

  35. S. Link and M. A. El-Sayed (2003). Annu. Rev. Phys. Chem. 54, (1), 331–366.

    Article  CAS  PubMed  Google Scholar 

  36. A. I. El-Batal and M. S. Al Tamie (2016). Pharm. Lett. 8, (2), 315–333.

    CAS  Google Scholar 

  37. N. M. Abdelbaky, Cairo University Theses (2012).

  38. S. Naveed and M. Nafees (2015). Open Access Libr. J. 2, (4), 1.

    Google Scholar 

  39. A. Hanora, et al. (2016). J. Chem. Pharm. Res. 8, (3), 405–423.

    CAS  Google Scholar 

  40. A. I. El-Batal, et al. (2016). Nanomater. Nanotechnol. 6, 13.

    Article  CAS  Google Scholar 

  41. P. Sadasivudu, N. Shastri, and M. Sadanandam (2009). Int. J. ChemTech Res. 1, (4), 1131–1136.

    CAS  Google Scholar 

  42. A. I. El-Batal, et al. (2018). Microbial Pathog. 118, 159–169.

    Article  CAS  Google Scholar 

  43. H. Bar, et al. (2009). Colloids Surf. A Physicochem. Eng. Asp. 339, (1), 134–139.

    Article  CAS  Google Scholar 

  44. H. Huang and X. Yang (2004). Carbohydr. Res. 339, (15), 2627–2631.

    Article  CAS  PubMed  Google Scholar 

  45. K. G. Stamplecoskie and J. C. Scaiano (2010). J. Am. Chem. Soc. 132, (6), 1825–1827.

    Article  CAS  PubMed  Google Scholar 

  46. S. Mohan, et al. (2014). Carbohydr. Polym. 106, 469–474.

    Article  CAS  PubMed  Google Scholar 

  47. A. El-Batal, et al. (2014). Br. J. Pharm. Res. 4(21).

  48. A. El-Batal, et al. (2012). Int. J. Pharm. Sci. Health Care 6, (2), 1–22.

    Google Scholar 

  49. A. Gannoruwa, B. Ariyasinghe, and J. Bandara (2016). Catal. Sci. Technol. 6, (2), 479–487.

    Article  CAS  Google Scholar 

  50. A. I. El-Batal, et al. (2016). Bioengineering 3, (2), 14.

    Article  CAS  PubMed Central  Google Scholar 

  51. L. Rastogi and J. Arunachalam (2011). Mater. Chem. Phys. 129, (1), 558–563.

    Article  CAS  Google Scholar 

  52. Z.-M. Xiu, et al. (2012). Nano Lett. 12, (8), 4271–4275.

    Article  CAS  PubMed  Google Scholar 

  53. S. Prabhu and E. K. Poulose (2012). Int. Nano Lett. 2, (1), 32.

    Article  Google Scholar 

  54. P. Kanmani and J.-W. Rhim (2014). Carbohydr. Polym. 106, 190–199.

    Article  CAS  PubMed  Google Scholar 

  55. B. Das, et al. (2017). Arabian J. Chem. 10, (6), 862–876.

    Article  CAS  Google Scholar 

  56. J. Saxena, et al. (2016). SpringerPlus 5, (1), 1–10.

    Article  CAS  Google Scholar 

  57. A. Muniyan, et al. (2017). World J. Microbiol. Biotechnol. 33, (7), 147.

    Article  CAS  PubMed  Google Scholar 

  58. R. Thapa, et al. (2017). Ann. Clin. Microbiol. Antimicrob. 16, (1), 39.

    Article  PubMed  PubMed Central  Google Scholar 

  59. A. Banu and V. Rathod (2013). Int. J. Biomed. Nanosci. Nanotechnol. 3, (1–2), 211–220.

    Article  CAS  Google Scholar 

  60. M. Rai, et al. (2012). J. Appl. Microbiol. 112, (5), 841–852.

    Article  CAS  PubMed  Google Scholar 

  61. S. Jana and T. Pal (2007). J. Nanosci. Nanotechnol. 7, (6), 2151–2156.

    Article  CAS  PubMed  Google Scholar 

  62. H. Szmacinski, et al. (2008). Appl. Spectrosc. 62, (7), 733–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. R. Stiufiuc, et al. (2013). Nanoscale Res. Lett. 8, (1), 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. C. Malarkodi, et al. (2013). Adv. Nano Res. 1, (2), 83–91.

    Article  Google Scholar 

  65. A. Nalwade and A. Jadhav (2013). Arch. Appl. Sci. Res. 5, (3), 45–49.

    CAS  Google Scholar 

  66. S. Ghosh, et al. (2012). Int. J. Nanomed. 7, 483.

    CAS  Google Scholar 

  67. W. Schreurs and H. Rosenberg (1982). J Bacteriol. 152, (1), 7–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. C.-N. Lok, et al. (2006). J. Proteome Res. 5, (4), 916–924.

    Article  CAS  PubMed  Google Scholar 

  69. S.-H. Kim, et al. (2011). Korean. J. Microbiol. Biotechnol. 39, (1), 77–85.

    CAS  Google Scholar 

  70. J. Li, et al. (2013). J. Nanosci. Nanotechnol. 13, (10), 6806–6813.

    Article  PubMed  Google Scholar 

  71. J. R. Morones, et al. (2005). Nanotechnology 16, (10), 2346.

    Article  CAS  PubMed  Google Scholar 

  72. W. K. Jung, et al. (2008). Appl. Environ. Microbiol. 74, (7), 2171–2178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. U. Klueh, et al. (2000). J. Biomed. Mater. Res. A 53, (6), 621–631.

    Article  CAS  Google Scholar 

  74. Y.-H. Hsueh et al. (2015). PloS One 10(12).

  75. D. Wu, et al. (2014). J. Endod. 40, (2), 285–290.

    Article  PubMed  Google Scholar 

  76. C. Pellieux, et al. (2000). Methods Enzymol. 319, 197–207.

    Article  CAS  PubMed  Google Scholar 

  77. P. K. Blecher and A. Friedman (2012). J. Drugs Dermatol. 11, (7), 846–851.

    Google Scholar 

  78. S. Belluco et al. (2016). Front. Microbiol. 7.

  79. H. Xie, M. M. Mason, and J. P. Wise (2011). Rev. Environ. Health 26, (4), 251–268.

    Article  CAS  PubMed  Google Scholar 

  80. J. Deutscher and M. H. Saier Jr. (2005). J. Mol. Microbiol. Biotechnol. 9, (3–4), 125–131.

    Article  CAS  PubMed  Google Scholar 

  81. J. Kirstein and K. Turgay (2005). J. Mol. Microbiol. Biotechnol. 9, (3–4), 182–188.

    Article  CAS  PubMed  Google Scholar 

  82. S. Shrivastava (2008). Dig. J. Nanomater. Bios. 3, 303–308.

    Google Scholar 

  83. J. Tian, et al. (2007). Chem. Med. Chem. 2, (1), 129–136.

    Article  CAS  PubMed  Google Scholar 

  84. Z.-M. Xiu, J. Ma, and P. J. Alvarez (2011). Environ. Sci. Technol. 45, (20), 9003–9008.

    Article  CAS  PubMed  Google Scholar 

  85. A. L. Koch (1986). J. Theor. Biol. 120, (1), 73–84.

    Article  CAS  PubMed  Google Scholar 

  86. G. Fujii, et al. (1997). Biochemistry 36, (16), 4959–4968.

    Article  CAS  PubMed  Google Scholar 

  87. K.-J. Kim, et al. (2009). Biometals 22, (2), 235–242.

    Article  CAS  PubMed  Google Scholar 

  88. F. J. Alvarez-Peral, et al. (2002). Microbiology 148, (8), 2599–2606.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Nanotechnology Research Unit (P. I. Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/Biotechnological and Irradiation Processes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Batal, A.I., Mosallam, F.M. & El-Sayyad, G.S. Synthesis of Metallic Silver Nanoparticles by Fluconazole Drug and Gamma Rays to Inhibit the Growth of Multidrug-Resistant Microbes. J Clust Sci 29, 1003–1015 (2018). https://doi.org/10.1007/s10876-018-1411-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1411-5

Keywords

Navigation