Advertisement

Journal of Cluster Science

, Volume 29, Issue 4, pp 709–718 | Cite as

Study the Thermal Stability of Nitrogen Doped Reduced Graphite Oxide Supported Copper Catalyst

  • Alyaa K. Mageed
  • A. B. Dayang Radiah
  • A. Salmiaton
  • Shamsul Izhar
  • Musab Abdul Razak
Original Paper
  • 86 Downloads

Abstract

The thermal stability of the as-synthesized Nitrogen-doped reduced graphite oxide supported copper catalyst was investigated by a thermogravimetric analyzer (TGA) at a temperature range 273–1173 K under purified N2 atmosphere using three different heating rates (15, 20 and 25 K min−1). Firstly, to obtained nitrogen-doped reduced graphite oxide (N-rGO), the functionalized graphite oxide was synthesized using Staudenmaier’s method reduced by continuously stirring in an ammonia solution subsequently. The rGO was doped with nitrogen and impregnated with Cu-precursor to obtain Cu/N-rGO. The as-synthesized GO; N-rGO and Cu/N-rGO were characterized by FESEM, EDX, TEM, XRD and XPS. All these analyses were resulted in successfully samples synthesized. The TGA kinetic data were fitted into Kissinger and Flynn–Wall–Ozawa model free expressions to obtain apparent activation energies of 83.34 and 102.59 J mol−1 and pre-exponential factors of 2.40 × 107 and 5.01 × 1011 s−1. The high R2 values of 0.9999 and 0.9666 obtained from fitting TGA kinetic data using the Kissinger and Flynn–Wall–Ozawa model free expressions show that the data were well fitted to the expressions. This implies that the thermal behavior of nitrogen doped reduced graphite oxide supported Cu catalyst can be investigated using Kissinger and Flynn–Wall–Ozawa model free expressions.

Keywords

Copper catalyst Nitrogen-doped reduced graphite oxide Thermogravimetric analysis Kissinger model Flynn–Wall–Ozawa model 

Notes

Acknowledgements

The authors would like to thank laboratory of Green Technology and the University Putra Malaysia for making this research possible

References

  1. 1.
    C. Fu, G. Zhao, H. Zhang, and S. Li (2013). Int. J. Electrochem. Sci. 8, 6269–6280.Google Scholar
  2. 2.
    A. G. Hsieh, S. Korkut, C. Punckt, and I. A. Aksay (2013). ACS J. Surf. Colloids. 29, (48), 14831–14838.CrossRefGoogle Scholar
  3. 3.
    L. L. Tan, W. J. Ong, S. P. Chai, and A. Mohamed (2013). Nanoscale Res. Lett. 8, 465.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    R. Flyunt, W. Knolle, A. Kahnt, S. Eigler, A. Lotnyk, T. Häupl, et al. (2014). Am. J. Nano Res. Appl. 2, 9–18.Google Scholar
  5. 5.
    I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee (2010). Nat. Commun. 1, 73.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    C. O. Ania, M. Seredych, E. Rodriguez-Castellon, and T. J. Appl (2015). Catal. B Environ. 163, 424–435.CrossRefGoogle Scholar
  7. 7.
    J. Yang, X. Shen, Z. Ji, H. Zhou, G. Zhu, and K. Chen (2015). Ceram. Int. 41, 4056–4063.CrossRefGoogle Scholar
  8. 8.
    H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, and J. W. Choi (2011). Nano Lett. 11, 2472–2477.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Y. Li, K. Ye, K. Cheng, D. Cao, Y. Pan, S. Kong, X. Zhang, and G. Wang (2014). Chem. 727, 154–162.Google Scholar
  10. 10.
    E. N. Nxumalo and N. J. Coville (2010). Materials (Basel). 3, 2141–2171.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    V. Loryuenyong, K. Totepvimarn, P. Eimburanapravat, W. Boonchompoo, and A. Buasri (2013). Adv. Mater. Sci. Eng. 2013, 1–5.CrossRefGoogle Scholar
  12. 12.
    M. Naebe, J. Wang, A. Amini, H. Khayyam, N. Hameed, L. H. Li, Y. Chen, and B. Fox (2014). Sci. Rep. 4, 1–7.Google Scholar
  13. 13.
    S. Yang, G. Li, D. Wang, Z. Qiao, and L. Qu (2017). Sens. Actuators B Chem. 238, 588–595.CrossRefGoogle Scholar
  14. 14.
    N. Cao, W. Luo, and G. Cheng (2013). Int. J. Hydrog. Energy. 38, 11964–11972.CrossRefGoogle Scholar
  15. 15.
    J. Ma, L. Wang, X. Mu, and L. Li (2015). Int. J. Hydrog. Energy. 40, 2641–2647.CrossRefGoogle Scholar
  16. 16.
    L. Leng, J. Li, X. Zeng, H. Song, T. Shu, H. Wang, and S. Liao (2016). J. Power Sources. 332, 1–6.CrossRefGoogle Scholar
  17. 17.
    M. El Khatib and G. A. Molander (2015). Org. Lett. 17, 3294–3297.CrossRefGoogle Scholar
  18. 18.
    T. D. Quach and R. A. Batey (2003). Org. Lett. 5, 1381–1384.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    V. Z. Fridman, A. A. Davydov, and K. Titievsky (2004). J. Catal. 222, 545–557.CrossRefGoogle Scholar
  20. 20.
    R. L. Blaine and H. E. Kissinger (2012). Thermochim. Acta. 540, 1–6.CrossRefGoogle Scholar
  21. 21.
    M. A. Islam, M. Auta, G. Kabir, and B. H. Hameed (2015). Bioresour. Technol. 200, 335–341.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    A. K. Burnham and L. N. Dinh (2007). J. Therm. Anal. Calorim. 89, 479–490.CrossRefGoogle Scholar
  23. 23.
    E. Budrugeac and P. Segal (2010). J. Therm. Anal. Calorim. 102, 605–608.CrossRefGoogle Scholar
  24. 24.
    F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu (2008). Polym. Degrad. Stab. 93, 90–98.CrossRefGoogle Scholar
  25. 25.
    A. Aboulkas, K. El harfi, and A. El Bouadili (2010). Energy Convers. Manag. 51, 1363–1369.CrossRefGoogle Scholar
  26. 26.
    T. Ozawa (1965). Bull. Chem. Soc. Jpn. 38, 1881–1886.CrossRefGoogle Scholar
  27. 27.
    D. W. Lee and J. W. Seo (2011). J. Phys. Chem. C. 115, 2705–2708.CrossRefGoogle Scholar
  28. 28.
    A. Ambrosi, C. K. Chua, B. Khezri, Z. Sofer, R. D. Webster, and M. Pumera (2012). Proc. Natl. Acad. Sci. 109, 12899–12904.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    K. M. Alyaa, D. R. Ab, A. Salmiaton, I. Izhar, M. A. Razak, H. M. Yusoff, F. M. Yasin, and S. Kamarudin (2016). Int. J. Appl. Chem. 12, 104–108.Google Scholar
  30. 30.
    M. Alanyalioǧlu, J. J. Segura, J. Oró-Sol, and N. Casañ-Pastor (2012). Carbon. 50, 142–152.CrossRefGoogle Scholar
  31. 31.
    H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonson, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Seville, and I. A. Aksay (2006). J. Phys. Chem. B. 110, 8535–8539.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    W. Zhang, P. Wu, Z. Li, and J. Yang (2011). J. Phys. Chem. C. 115, 17782–17787.CrossRefGoogle Scholar
  33. 33.
    H. Seung Hun, J. Hae-Mi, and C. Sung-Ho (2010). J. Korean Phys. Soc. 57, 1649.CrossRefGoogle Scholar
  34. 34.
    Z. J. Lu, M. W. Xu, S. J. Bao, K. Tan, H. Chai, C. J. Cai, C. C. Ji, and Q. Zhang (2013). J. Mater. Sci. 48, 8101–8107.CrossRefGoogle Scholar
  35. 35.
    Z. Mou, X. Chen, Y. Du, X. Wang, P. Yang, and S. Wang (2011). Appl. Surf. Sci. 258, (5), 1704–1710.CrossRefGoogle Scholar
  36. 36.
    A. Zarnegaryan, M. Moghadam, S. Tangestaninejad, V. Mirkhani, and I. Mohammdpoor-Baltork (2016). New J. Chem. 40, 2280–2286.CrossRefGoogle Scholar
  37. 37.
    J. Song, X. Wang, and C. T. Chang (2014). J. Nanomater. 276143, 6. Article ID.Google Scholar
  38. 38.
    B. Neha (2012). Open J. Org. Polym. Mater. 02, 75–79.CrossRefGoogle Scholar
  39. 39.
    L. Feng, G. Gao, P. Huang, X. Wang, C. Zhang, J. Zhang, S. Guo, and D. Cui (2011). Nanoscale Res. Lett. 6, 551.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    J. Yang, X. Shen, Z. Ji, H. Zhou, G. Zhu, and K. Chen (2014). Appl. Surf. Sci. 316, 575–581.CrossRefGoogle Scholar
  41. 41.
    S. Wakeland, R. Martinez, J. K. Grey, and C. C. Luhrs (2010). Carbon N. Y. 48, (12), 3463–3470.CrossRefGoogle Scholar
  42. 42.
    X. Liu, Z. Wu, and Y. Yin (2017). Synth. Met. 223, 145–152.CrossRefGoogle Scholar
  43. 43.
    W. Zhang, X. Li, Z. Yang, X. Tang, Y. Ma, M. Li, N. Hu, H. Wei, and Y. Zhang (2016). Nanotechnology. 27, (26), 265703.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu (2009). Nano Lett. 9, (5), 1752–1758.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Z. Jia, T. Chen, J. Wang, J. Ni, H. Li, and X. Shao (2015). Tribol. Int. 88, 17–24.CrossRefGoogle Scholar
  46. 46.
    M. Durando, R. Morrish, and A. J. Muscat (2008). Methods. 9, 16659–16668.Google Scholar
  47. 47.
    I. V. Morozov, K. O. Znamenkov, Y. M. Korenev, and O. A. Shlyakhtin (2003). Thermochim. Acta. 403, 173–179.CrossRefGoogle Scholar
  48. 48.
    E. Sima-Ella, G. Yuan, and T. Mays (2005). Fuel. 84, 1920–1925.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alyaa K. Mageed
    • 1
  • A. B. Dayang Radiah
    • 1
  • A. Salmiaton
    • 1
  • Shamsul Izhar
    • 1
  • Musab Abdul Razak
    • 1
  1. 1.Department of Chemical and Environmental EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations