Skip to main content

Advertisement

Log in

Structural Evolution and Superatoms in Molybdenum Atom Stabilized Boron Clusters: MoBn (n = 10–24)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Doping transition metal atom is known as an effective approach to stabilize an atomic cluster and modify its structure and electronic properties. We herein report the effect of molybdenum doping on the structural evolution of medium-sized boron clusters. The lowest-energy structures of MoBn (n = 10, 12, 14, 16, 18, 20, 22, 24) clusters are globally searched using genetic algorithm combined with density functional theory calculations. We found that Mo doping has significantly affected the grow behaviors of Bn clusters, leading to a structural evolution from bowl-like to tubular and finally endohedral cage. The size-dependent binding energy, HOMO–LUMO gap, vertical ionization potential and vertical electron affinity show that MoB12, MoB22 and MoB24 clusters have relatively higher stability and enhanced chemical inertness. More interestingly, the endohedral MoB22 cage is identified as an elegant superatom, which satisfies 18-electron closed shell configuration well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Zhao, L. Ma, D. Tian, and R. Xie (2008). J. Comput. Theor. Nano. 5, 7.

    CAS  Google Scholar 

  2. H. J. Zhai, B. Kiran, J. Li, and L. S. Wang (2003). Nat. Mater. 2, 827.

    Article  CAS  Google Scholar 

  3. J. Zhao, X. Huang, P. Jin, and Z. Chen (2015). Coord. Chem. Rev. 289–290, 315.

    Article  Google Scholar 

  4. X. Huang, H. G. Xu, S. Lu, Y. Su, R. B. King, J. Zhao, and W. Zheng (2014). Nanoscale 6, 14617.

    Article  CAS  Google Scholar 

  5. H. Hiura, T. Miyazaki, and T. Kanayama (2001). Phys. Rev. Lett. 86, 1733.

    Article  CAS  Google Scholar 

  6. V. Kumar and Y. Kawazoe (2003). Phys. Rev. Lett. 91, 199901.

    Article  Google Scholar 

  7. S. N. Khanna, B. K. Rao, and P. Jena (2002). Phys. Rev. Lett. 89, 016803.

    Article  CAS  Google Scholar 

  8. P. Pyykkö (2006). J. Organomet. Chem. 691, 4336.

    Article  Google Scholar 

  9. N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson (2008). Phys. Rev. Lett 98, 166804.

    Article  Google Scholar 

  10. J. Zhao, L. Wang, F. Li, and Z. Chen (2010). J. Phys. Chem. A 114, 9969.

    Article  CAS  Google Scholar 

  11. F. Li, P. Jin, D. Jiang, L. Wang, S. B. Zhang, J. Zhao, and Z. Chen (2012). J. Chem. Phys. 136, 074302.

    Article  Google Scholar 

  12. P. Pochet, L. Genovese, S. De, S. Goedecker, D. Caliste, S. A. Ghasemi, K. Bao, and T. Deutsch (2011). Phys. Rev. B 83, 081403R.

    Article  Google Scholar 

  13. J. Lv, Y. Wang, L. Zhang, H. Lin, J. Zhao, and Y. Ma (2015). Nanoscale 7, 10482.

    Article  CAS  Google Scholar 

  14. L. S. Wang (2016). Int. Rev. Phys. Chem. 35, 69.

    Article  Google Scholar 

  15. N. M. Tam, H. T. Pham, L. V. Duong, M. P. Phamho, and M. T. Nguyen (2015). Phys. Chem. Chem. Phys. 17, 3000.

    Article  CAS  Google Scholar 

  16. L. Zhao, X. Qu, Y. Wang, J. Lv, L. Zhang, Z. Y. Hu, G. R. Gu, and Y. Ma (2017). J. Phys. Condens. Matter. 29, 265401.

    Article  Google Scholar 

  17. H. R. Li, H. Liu, X. X. Tian, W. Y. Zan, Y. W. Mu, H. G. Lu, J. Li, Y. K. Wang, and S. D. Li (2017). Phys. Chem. Chem. Phys. 19, 27025.

    Article  CAS  Google Scholar 

  18. C. Romanescu, T. R. Galeev, W. L. Li, A. I. Boldyrev, and L. S. Wang (2011). Angew. Chem. Int. Ed. 50, 9334.

    Article  CAS  Google Scholar 

  19. W.-L. Li, C. Romanescu, T. R. Galeev, Z. A. Piazza, A. I. Boldyrev, and L.-S. Wang (2012). J. Am. Chem. Soc. 134, 165.

    Article  CAS  Google Scholar 

  20. T. R. Galeev, C. Romanescu, W. L. Li, L. S. Wang, and A. I. Boldyrev (2012). Cheminform 43, 2101.

    Article  Google Scholar 

  21. C. Romanescu, T. R. Galeev, A. P. Sergeeva, W. L. Li, L. S. Wang, and A. I. Boldyrev (2012). J. Organomet. Chem. 721–722, 148.

    Article  Google Scholar 

  22. C. Romanescu, T. R. Galeev, W. L. Li, A. I. Boldyrev, and L. S. Wang (2013). J. Chem. Phys. 138, 6004.

    Article  Google Scholar 

  23. I. A. Popov, T. Jian, G. V. Lopez, A. I. Boldyrev, and L. S. Wang (2015). Nat. Commun. 6, 8654.

    Article  CAS  Google Scholar 

  24. T. Jian, W. L. Li, X. Chen, T. T. Chen, G. V. Lopez, J. Li, and L. S. Wang (2016). Chem. Sci. 7, 7020.

    Article  CAS  Google Scholar 

  25. T. Jian, W. L. Li, I. A. Popov, G. V. Lopez, X. Chen, A. I. Boldyrev, J. Li, and L. S. Wang (2016). J. Chem. Phys. 144, 154310.

    Article  Google Scholar 

  26. J. Zhao, R. Shi, L. Sai, X. Huang, and Y. Su (2016). Mol. Simul. 42, 1.

    Article  CAS  Google Scholar 

  27. B. Delley (2000). J. Chem. Phys. 113, 7756.

    Article  CAS  Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  29. X. Huang, Y. Su, L. Sai, J. Zhao, and V. Kumar (2014). J. Cluster Sci. 26, 389.

    Article  Google Scholar 

  30. X. Huang, H. G. Xu, S. Lu, Y. Su, R. B. King, J. Zhao, and W. Zheng (2014). Nanoscale 6, 14617.

    Article  CAS  Google Scholar 

  31. X. Huang, S. J. Lu, X. Liang, Y. Su, L. Sai, Z. G. Zhang, J. Zhao, H. G. Xu, and W. Zheng (2015). J. Phys. Chem. C 119, 10987.

    Article  CAS  Google Scholar 

  32. X. Wu, S. J. Lu, X. Liang, X. Huang, Y. Qin, M. Chen, J. Zhao, H. G. Xu, R. B. King, and W. Zheng (2017). J. Chem. Phys. 146, 044306.

    Article  Google Scholar 

  33. X. Q. Liang, X. J. Deng, S. J. Lu, X. M. Huang, J. J. Zhao, H. G. Xu, W. J. Zheng, and X. C. Zeng (2017). J. Phys. Chem. C 121, 7037.

    Article  CAS  Google Scholar 

  34. L. Sai, X. Wu, N. Gao, J. Zhao, and R. B. King (2017). Nanoscale 9, 13905.

    Article  CAS  Google Scholar 

  35. C. Adamo and V. Barone (1999). J. Chem. Phys. 110, 6158.

    Article  CAS  Google Scholar 

  36. G. W. Trucks, M. J. Frisch, and H. B. Schlegel Gaussian 09, Revision A.01 (Gaussian Inc., Wallingford, 2009).

    Google Scholar 

  37. R.-N. Zhao, Y. Yuan, and J.-G. Han (2014). J. Theor. Comput. Chem. 13, 1450036.

    Article  Google Scholar 

  38. I. A. Popov, W. L. Li, Z. A. Piazza, A. I. Boldyrev, and L. S. Wang (2014). J. Phys. Chem. A 118, 8098.

    Article  CAS  Google Scholar 

  39. C. Romanescu, D. J. Harding, A. Fielicke, and L. S. Wang (2012). J. Chem. Phys. 137, 014317.

    Article  Google Scholar 

  40. D. C. Ghosh and R. Biswas (2002). Int J Mol Sci 3, 87.

    Article  CAS  Google Scholar 

  41. W. L. Li, T. Jian, X. Chen, H. R. Li, T. T. Chen, X. M. Luo, S. D. Li, J. Li, and L. S. Wang (2017). Chem. Commun. (Camb) 53, 1587.

    Article  CAS  Google Scholar 

  42. R. G. Pearson (2005). J. Chem. Sci. 117, 369.

    Article  CAS  Google Scholar 

  43. A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev (2014). Cheminform 47, 1349.

    CAS  Google Scholar 

  44. K. B. Wiberg (1968). Tetrahedron 24, 1083.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11574040), the Fundamental Research Funds for the Central Universities (DUT16-LAB01, DUT17LAB19), and the Supercomputing Center of Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jijun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, X. & Zhao, J. Structural Evolution and Superatoms in Molybdenum Atom Stabilized Boron Clusters: MoBn (n = 10–24). J Clust Sci 29, 847–852 (2018). https://doi.org/10.1007/s10876-018-1369-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1369-3

Keywords

Navigation