Skip to main content
Log in

Preparation of Graphene Through EDM Interfered with CO2

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Electric Discharge Method (EDM) was used to prepare graphene in deionized water which CO2 had been dissolved in advance. According to law of mass conservation, the chemical equation of EDM was balanced to prove the component was graphene. Tyndall effect, ultraviolet–visible spectroscopy (UV–Vis), Zetasizer, Transmission Electron Microscope and Raman were used for the identification of graphene. Then the impact of CO2 concentration on graphene preparation was discussed. The results showed that carbon atoms assemble into forming graphene. And zeta potential of graphene was − 31.6 mV, which indicated good suspension of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, and A. A. Firsov (2005). Two-dimensional gas of massless Dirac fermions in graphene. arXiv preprint cond-mat/0509330.

  2. H. Karamitaheri, M. Pourfath, R. Faez, and H. Kosina (2013). Atomistic study of the lattice thermal conductivity of rough graphene nanoribbons. IEEE Trans. Electron. Dev. 60, (7), 2142–2147.

    Article  CAS  Google Scholar 

  3. W. Wang, R. Du, A. Zafar, L. He, W. Zhao, Y. Chen, and Z. Ni (2017). High-performance graphene-based electrostatic field sensor. IEEE Electron. Dev. Lett. 38, 1136–1138.

    Article  Google Scholar 

  4. S. Lee, K. Lee, and Z. Zhong (2010). Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano lett. 10, (11), 4702–4707.

    Article  CAS  PubMed  Google Scholar 

  5. L. Hao, J. Gallop, Q. Liu, and J. Chen (2015). Microwave method for high-frequency properties of graphene. IET Circuits Dev. Syst. 9, (6), 397–402.

    Article  Google Scholar 

  6. J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, and L. Zhi (2012). Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24, (21), 2874–2878.

    Article  CAS  PubMed  Google Scholar 

  7. G. L. Klimchitskaya and V. M. Mostepanenko (2017). Optical properties of dielectric plates coated with gapped graphene. Phys. Rev. B 95, (3), 035425.

    Article  Google Scholar 

  8. K. K. Chow (2017). CVD graphene-based low pump threshold bidirectional mode-locked fibre laser. Electron. Lett. 53, 1127–1128.

    Article  Google Scholar 

  9. J. C. Chou, W. Y. Hsu, Y. H. Liao, C. H. Lai, Y. J. Lin, P. H. You, and N. H. Nien (2017). Photovoltaic analysis of platinum counter electrode modified by graphene oxide and magnetic beads for dye-sensitized solar cell. IEEE Trans. Semicond. Manuf. 30, (3), 270–275.

    Article  Google Scholar 

  10. N. V. Klassen, O. A. Krivko, V. V. Kedrov, S. Z. Shmurak, A. P. Kiselev, I. M. Shmyt’ko, and V. O. Abramov (2010). Laser and electric arc synthesis of nanocrystalline scintillators. IEEE Trans. Nucl. Sci. 57, (3), 1377–1381.

    Article  CAS  Google Scholar 

  11. D. C. Tien, K. H. Tseng, C. Y. Liao, and T. T. Tsung (2009). Identification and quantification of ionic silver from colloidal silver prepared by electric spark discharge system and its antimicrobial potency study. J. Alloys Compd. 473, (1), 298–302.

    Article  CAS  Google Scholar 

  12. G. Karunakaran, R. Suriyaprabha, V. Rajendran, and N. Kannan (2014). Effect of contact angle, zeta potential and particles size on the in vitro studies of Al2O3 and SiO2 nanoparticles. IET Nanobiotechnol. 9, (1), 27–34.

    Article  Google Scholar 

  13. S. Sato, K. Mitsuhashi, and T. Ohara (2004). Effect of zeta potential of particles dispersed in an aqueous solution on magnetic filtration efficiency. IEEE Trans. Appl. Supercond. 14, (2), 1554–1557.

    Article  CAS  Google Scholar 

  14. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, and A. K. Geim (2006). Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, (18), 187401.

    Article  CAS  PubMed  Google Scholar 

  15. X. Y. Sun, J. F. Xue, Z. Y. Xia, and J. M. Ouyang (2014). Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy. IET Nanobiotechnol. 9, (3), 114–121.

    Article  Google Scholar 

  16. L. Melo, G. Burton, S. Warwick, and P. M. Wild (2015). Experimental investigation of long-period grating transition modes to monitor CO2 in high-pressure aqueous solutions. J. Lightwave Technol. 33, (12), 2554–2560.

    Article  CAS  Google Scholar 

  17. P. Marconcini and M. Macucci (2017). Envelope-function-based transport simulation of a graphene ribbon with an antidot lattice. IEEE Trans. Nanotechnol. 16, (4), 534–544.

    Article  CAS  Google Scholar 

  18. T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, and V. Ryzhii (2013). Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene. IEEE Trans. Terahertz Sci. Technol. 3, (1), 63–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Hsiung Tseng.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, KH., Chou, CJ., Shih, SH. et al. Preparation of Graphene Through EDM Interfered with CO2. J Clust Sci 29, 555–559 (2018). https://doi.org/10.1007/s10876-018-1367-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1367-5

Keywords

Navigation