Advertisement

Journal of Cluster Science

, Volume 29, Issue 4, pp 605–616 | Cite as

Ab Initio Investigation of the Micro-species in [CaCl2(H2O)n = 0–12] and Their Raman Spectra

  • Hongxia Zhou
  • Fayan Zhu
  • Yongquan Zhou
  • Hongyan Liu
  • Yan Fang
  • Chunhui Fang
Original Paper
  • 71 Downloads

Abstract

In this work, the structures of micro-species in [CaCl2(H2O)n = 0–12] were systematically studied by density functional theory. The distances between Ca2+ and the two Cl ions (rCa–Cl) are all less than 4.2 Å when n = 1–4, which shows that the main species is contact ion pair. When n = 5, the main species is solvent separated ion-pair [CaCl(H2O)5···Cl] (SIP/s) with one Cl dissociated from [CaCl2]. When n = 69, the main species is changed into solvent separated ion-pair (SIP/d) with two Cl dissociated from [CaCl2]. Six water molecules are located in the inner shell and other water molecules hydrate in the outer sphere in the form of hydrogen bonding. When n = 10–12, the main structure is still SIP/d. Moreover, the hydration number of calcium with the most stable structure in the first hydration shell is 7. The inner hydration distance remains almost unchanged and the outer water molecules have little effect on the inner ones. The vibrational frequencies of the water molecules in [CaCl2(H2O) n ] were also studied and discussed in detail.

Keywords

Calcium chloride Density functional theory Solution structure Micro-species Raman spectra 

Notes

Acknowledgements

We thank the National Natural Science Foundation of China (Nos. U1607106, 21573268), the Natural Science Foundation of Qinghai (No. 2015-ZJ-930Q) and the instruments and equipment function development technology and innovation project of Chinese Academy of Sciences (2018gl08) for support. We also acknowledge computing resources and time on the supercomputing center of National Super Computing Center in Shenzhen.

Supplementary material

10876_2018_1361_MOESM1_ESM.docx (33 kb)
Supplementary material 1 (DOCX 33 kb)
10876_2018_1361_MOESM2_ESM.docx (950 kb)
Supplementary material 2 (DOCX 950 kb)
10876_2018_1361_MOESM3_ESM.docx (25 kb)
Supplementary material 3 (DOCX 25 kb)
10876_2018_1361_MOESM4_ESM.docx (20 kb)
Supplementary material 4 (DOCX 20 kb)
10876_2018_1361_MOESM5_ESM.docx (42 kb)
Supplementary material 5 (DOCX 41 kb)

References

  1. 1.
    A. T. Blades, M. Peschke, U. H. Verkerk, and P. Kebarle (2004). J. Am. Chem. Soc. 126, 11995.CrossRefGoogle Scholar
  2. 2.
    Y. Inada, H. Hayashi, K. Sugimoto, and S. Funahashi (1999). J. Phys. Chem. A 103, 1401.CrossRefGoogle Scholar
  3. 3.
    W. W. Rudolph and G. Irmer (2013). Dalton Trans. 42, 3919.CrossRefGoogle Scholar
  4. 4.
    V. T. Pham and J. L. Fulton (2013). J. Chem. Phys. 138, 044201–1.Google Scholar
  5. 5.
    C. J. Johnson, L. C. Dzugan, A. B. Wolk, C. M. Leavitt, J. A. Fournier, A. B. McCoy, and M. A. Johnson (2014). J. Phys. Chem. A 118, 7590.CrossRefGoogle Scholar
  6. 6.
    F. Jalilehvand, D. Spangberg, P. Lindqvist-Reis, K. Hermansson, I. Persson, and M. Sandstro (2001). J. Am. Chem. Soc. 123, 431.CrossRefGoogle Scholar
  7. 7.
    Y. Badyal, A. Barnes, G. Cuello, and J. Simonson (2004). J. Phys. Chem. A 108, 11819.CrossRefGoogle Scholar
  8. 8.
    M. D. Baer and C. J. Mundy (1885). J. Phys. Chem. B 2016, 120.Google Scholar
  9. 9.
    M. Probst, T. Radnai, K. Heinzinger, P. Bopp, and B. Rode (1985). J. Phys. Chem. 89, 753.CrossRefGoogle Scholar
  10. 10.
    D. Spangberg, K. Hermansson, P. Lindqvist-Reis, F. Jalileh-vand, M. Sandstrom, and I. Persson (2000). J. Phys. Chem. B 104, 10467.CrossRefGoogle Scholar
  11. 11.
    T. Megyes, I. Bako, S. Balint, T. Grosz, and T. Radnai (2006). J. Mol. Liq. 129, 63.CrossRefGoogle Scholar
  12. 12.
    D. T. Bowron, E. C. Beret, E. Martin-Zamora, A. K. Soper, and E. S. Marcos (2012). J. Am. Chem. Soc. 134, 962.CrossRefGoogle Scholar
  13. 13.
    A. A. Zavitsas (2005). J. Phys. Chem. B 109, 20636.CrossRefGoogle Scholar
  14. 14.
    J. Fulton, S. Heald, Y. Badyal, and J. Simonson (2003). J. Phys. Chem. A 107, 4688.CrossRefGoogle Scholar
  15. 15.
    T. Todorova, P. H. Hunenberger, and J. Hutter (2008). J. Chem. Theory Comput. 4, 779.CrossRefGoogle Scholar
  16. 16.
    C. J. Fennell, A. Bizjak, V. Vlachy, and K. A. Dill (2009). J. Phys. Chem. B 113, 6782.CrossRefGoogle Scholar
  17. 17.
    M. Kohagen, P. E. Mason, and P. Jungwirth (2014). J. Phys. Chem. B 118, 7902.CrossRefGoogle Scholar
  18. 18.
    Q. Dai, J. J. Xu, H. J. Li, and H. B. Yi (2015). Mol. Phys. 133, 1.Google Scholar
  19. 19.
    F. C. Lightstone, E. Schwegler, M. Allesch, F. Gygi, and G. Galli (2005). Chem. Phys. Chem. 6, 1745.CrossRefGoogle Scholar
  20. 20.
    T. Tofteberg, A. Ohrn, and G. Karlstrom (2006). Chem. Phys. Lett. 429, 436.CrossRefGoogle Scholar
  21. 21.
    J. Piquemal, L. Perera, G. Cisneros, R. Ren, L. Pedersen, and T. Darden (2006). J. Chem. Phys. 125, 054511–1.CrossRefGoogle Scholar
  22. 22.
    C. Schwenk, H. Loeffler, and B. Rode (2001). J. Chem. Phys. 115, 10808.CrossRefGoogle Scholar
  23. 23.
    X. L. Lei and B. C. Pan (2010). J. Phys. Chem. A 114, 7595.CrossRefGoogle Scholar
  24. 24.
    A. D. Becke (1993). J. Chem. Phys. 98, 5648.CrossRefGoogle Scholar
  25. 25.
    C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.CrossRefGoogle Scholar
  26. 26.
    M. F. Bush, R. J. Saykally, and E. R. Williams (2008). J. Am. Chem. Soc. 130, 15482; Ibid, (2007) Chem Phys Chem, 8, 2245.Google Scholar
  27. 27.
    F. F. Xia, D. W. Zeng, H. B. Yi, and C. H. Fang (2013). J. Phys. Chem. A 117, 8468; ibid, (2010) J. Phys. Chem. A 114, 8406.Google Scholar
  28. 28.
    F. Y. Zhu, H. X. Zhou, Y. Q. Zhou, H. W. Ge, H. Y. Liu, C. H. Fang, and Y. Fang (2017) J Clust. Sci. 28, 2293; Ibid, (2016) Eur. Phys. J. D 70, 246.Google Scholar
  29. 29.
    A. C. Olleta, H. M. Lee, and K. S. Kim (2006). J. Chem. Phys. 124, 024321–1.CrossRefGoogle Scholar
  30. 30.
    N. J. Singh, H. B. Yi, S. K. Min, M. Park, and K. S. Kim (2007). J. Phys. Chem. B 110, 3808.CrossRefGoogle Scholar
  31. 31.
    A. C. Olleta, H. M. Lee, and K. S. Kim (2007). J. Chem. Phys. 126, 144311–1.CrossRefGoogle Scholar
  32. 32.
    R. Ditchfield, W. J. Hehre, and J. A. Pople (1971). J. Chem. Phys. 54, 724.CrossRefGoogle Scholar
  33. 33.
    J. D. Chai and M. Head-Gordon (2008). Phys. Chem. Chem. Phys. 10, 6615.CrossRefGoogle Scholar
  34. 34.
    Z. Zeng, G. L. Hou, J. Song, G. Feng, H. G. Xu, and W. J. Zheng (2015). Phys. Chem. Chem. Phys. 17, 9135.CrossRefGoogle Scholar
  35. 35.
    Z. Zeng, C. W. Liu, G. L. Hou, G. Feng, H. G. Xu, Y. Q. Gao, and W. J. Zheng (2015). J. Phys. Chem. A 119, 2845.CrossRefGoogle Scholar
  36. 36.
    D. Rappoport and F. Furche (2010). J. Chem. Phys. 133, 134105-1.CrossRefGoogle Scholar
  37. 37.
    S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553.CrossRefGoogle Scholar
  38. 38.
    S. Abad, U. Pischel, and M. A. Miranda (2010). J. Phys. Chem. A 109, 2711.CrossRefGoogle Scholar
  39. 39.
    M. P. Andersson and P. Uvdal (2005). J. Phys. Chem. A 109, 2937.CrossRefGoogle Scholar
  40. 40.
    V. S. Bryantsev, M. S. Diallo, and W. A. Goddard (2009). J. Phys. Chem. B 112, 9709.CrossRefGoogle Scholar
  41. 41.
    B. Mennucci, E. Cances, and J. Tomasi (1997). J. Phys. Chem. B 101, 10506.CrossRefGoogle Scholar
  42. 42.
    Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox (2013) Gaussian, Inc., Wallingford CT.Google Scholar
  43. 43.
    T. Steiner (2002). Angew. Chem. Int. Ed. 41, 48.CrossRefGoogle Scholar
  44. 44.
    T. Megyes, T. Grosz, T. Radnai, I. Bako, and G. Palinkas (2004). J. Phys. Chem. A 108, 7261.CrossRefGoogle Scholar
  45. 45.
    P. D’Angelo, V. Migliorati, F. Sessa, G. Mancini, and I. Persson (2016). J. Phys. Chem. B 120, 4114.CrossRefGoogle Scholar
  46. 46.
    F. Y. Zhu, H. X. Zhou, Y. Q. Zhou, J. T. Miao, C. H. Fang, Y. Fang, P. C. Sun, H. W. Ge, and H. Y. Liu (2016). Eur. Phys. J. D 70, 246-1-10.Google Scholar
  47. 47.
    R. S. Walters, E. D. Pillai, and M. A. Duncan (2005). J. Am. Chem. Soc. 127, 16599.CrossRefGoogle Scholar
  48. 48.
    L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee (1989). J. Chem. Phys. 91, 7319.CrossRefGoogle Scholar
  49. 49.
    M. Miyazaki, A. Fujii, T. Ebata, and N. Mikami (2004). Science 304, 1134.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Mechanical Engineering CollegeQinghai UniversityXiningPeople’s Republic of China
  2. 2.Laboratory of Salt Resources and Chemistry, Institute of Salt LakesChinese Academy of SciencesXiningPeople’s Republic of China

Personalised recommendations