Advertisement

Journal of Cluster Science

, Volume 29, Issue 5, pp 837–846 | Cite as

Hydride Induced Formation and Optical Properties of Tetrahedral [Cu4(μ4-H)(μ2-X)2(PPh2Py)4]+ Clusters (X = Cl, Br; Py = pyridyl)

  • Hong-Hong Nie
  • Ying-Zi Han
  • Zichao Tang
  • Shi-Yao Yang
  • Boon K. Teo
Original Paper

Abstract

Three standalone tetrahedral copper hydride clusters, [Cu4(μ4-H)(μ2-X)2(PPh2Py)4]+ (X = Cl, Br; Py = pyridyl), containing a tetrahedral [Cu4(μ4-H)] unit have been synthesized and structurally characterized. The six Cu–Cu distances of the [Cu4(μ4-H)] unit can be divided into three groups (2.65, 2.85, and 2.95 Å), lowering the idealized point group of the Cu4 core to D2 symmetry, thereby resulting in intrinsically chiral metal clusters which exist as racemic pairs of enantiomers in the centrosymmetric crystal structures. Strong photoluminescence (attributable to the existence of the two short Cu–Cu distances of 2.65 Å) was observed in solution and in the solid state upon near-UV irradiation. According to the Jellium model, the title clusters can be considered as two-shell Jelliumatic systems with superatomic electron counts of 2e@0e corresponding to the two shells of H@[Cu4X2(PPh2Py)4]2+. The four-coordinated hydride in the tetrahedral Cu4 cavity adopts the superatomic electronic configuration of 1S2.

Keywords

Hydride Copper Cluster Fluorescence 

Notes

Acknowledgements

Financial supports from NNSFC (Grant Nos. 21071117, 21471125) and iChEM, Xiamen University, are gratefully acknowledged.

Supplementary material

10876_2018_1359_MOESM1_ESM.doc (2.3 mb)
Supplementary material 1 (DOC 2377 kb)

References

  1. 1.
    W. S. Mahoney, D. M. Brestensky, and J. M. Stryker (1988). J. Am. Chem. Soc. 110, 291.CrossRefGoogle Scholar
  2. 2.
    A. J. Hoskin and D. W. Stephan (2002). Coord. Chem. Rev. 233, 107.CrossRefGoogle Scholar
  3. 3.
    M. A. Esteruelas and L. A. Oro (1998). Chem. Rev. 98, 577.CrossRefGoogle Scholar
  4. 4.
    M. Konkol and J. Okuda (2008). Coord. Chem. Rev. 252, 1577.CrossRefGoogle Scholar
  5. 5.
    Y. Ren, X. Xu, K. Sun, and J. Xu (2005). Tetrahedron Asymmetry 16, 4010.CrossRefGoogle Scholar
  6. 6.
    G. S. McGrady and G. Guilera (2003). Chem. Soc. Rev. 32, 383.CrossRefGoogle Scholar
  7. 7.
    C. Deutsch, N. Krause, and B. H. Lipshutz (2008). Chem. Rev. 108, 2916.CrossRefGoogle Scholar
  8. 8.
    S. K. Brayshaw, M. J. Ingleson, J. C. Green, J. S. McIndoe, P. R. Raithby, G. Kociok-Köhn, and A. S. Weller (2006). J. Am. Chem. Soc. 128, 6247.CrossRefGoogle Scholar
  9. 9.
    J. Graetz (2009). Chem. Soc. Rev. 38, 73.CrossRefGoogle Scholar
  10. 10.
    J. Yang, A. Sudik, C. Wolverton, and D. J. Siegel (2010). Chem. Soc. Rev. 39, 656.CrossRefGoogle Scholar
  11. 11.
    R. S. Dhayal, J.-H. Liao, Y.-R. Lin, P.-K. Liao, S. Kahlal, J.-Y. Saillard, and C. W. Liu (2013). J. Am. Chem. Soc. 135, 4704.CrossRefGoogle Scholar
  12. 12.
    N. P. Mankad, D. S. Laitar, and J. P. Sadighi (2004). J. Organomet. Chem. 23, 3369.CrossRefGoogle Scholar
  13. 13.
    C. M. Wyss, B. K. Tate, J. Bacsa, T. G. Gray, and J. P. Sadighi (2013). Angew. Chem. Int. Ed. 52, 12920.CrossRefGoogle Scholar
  14. 14.
    Z. Mao, J.-S. Huang, C.-M. Che, N. Zhu, S. K.-Y. Leung, and Z.-Y. Zhou (2005). J. Am. Chem. Soc. 127, 4562.CrossRefGoogle Scholar
  15. 15.
    J. Li, J. M. White, R. J. Mulder, G. E. Reid, P. S. Donnelly, and R. A. J. O’Hair (2016). Inorg. Chem. 55, 9858.CrossRefGoogle Scholar
  16. 16.
    K. Nakamae, B. Kure, T. Nakajima, Y. Ura, and T. Tanase (2014). Chem. Asian J. 9, 3106.CrossRefGoogle Scholar
  17. 17.
    G. Ma, M. J. Ferguson, R. McDonald, and R. G. Cavell (2010). J. Organomet. Chem. 29, 4251.CrossRefGoogle Scholar
  18. 18.
    M. S. Eberhart, J. R. Norton, A. Zuzek, W. Sattler, and S. Ruccolo (2013). J. Am. Chem. Soc. 135, 17262.CrossRefGoogle Scholar
  19. 19.
    P.-K. Liao, C.-S. Fang, A. J. Edwards, S. Kahlal, J.-Y. Saillard, and C. W. Liu (2012). Inorg. Chem. 51, 6577.CrossRefGoogle Scholar
  20. 20.
    C. Latouche, S. Kahlal, Y.-R. Lin, J.-H. Liao, E. Furet, C. W. Liu, and J.-Y. Saillard (2013). Inorg. Chem. 52, 13253.CrossRefGoogle Scholar
  21. 21.
    P.-K. Liao, B. Sarkar, H.-W. Chang, J.-C. Wang, and C. W. Liu (2009). Inorg. Chem. 48, 4089.CrossRefGoogle Scholar
  22. 22.
    R. S. Dhayal, J.-H. Liao, H.-N. Hou, R. Ervilita, P.-K. Liao, and C. W. Liu (2015). J. Chem. Soc. Dalton Trans. 44, 5898.CrossRefGoogle Scholar
  23. 23.
    T. A. Nguyen, B. R. Goldsmith, H. T. Zaman, G. Wu, B. Peters, and T. W. Hayton (2015). Chem. Eur. J. 21, 5341.CrossRefGoogle Scholar
  24. 24.
    M. A. Huertos, I. Cano, N. A. G. Bandeira, J. Benet-Buchholz, C. Bo, and P. W. N. M. van Leeuwen (2014). Chem. Eur. J. 20, 16121.CrossRefGoogle Scholar
  25. 25.
    J.-H. Liao, R. S. Dhayal, X. Wang, S. Kahlal, J.-Y. Saillard, and C. W. Liu (2014). Inorg. Chem. 53, 11140.CrossRefGoogle Scholar
  26. 26.
    A. J. Edwards, R. S. Dhayal, P.-K. Liao, J.-H. Liao, M.-H. Chiang, R. O. Piltz, S. Kahlal, J.-Y. Saillard, and C. W. Liu (2014). Angew. Chem. Int. Ed. 53, 7214.CrossRefGoogle Scholar
  27. 27.
    R. S. Dhayal, J.-H. Liao, S. Kahlal, X. Wang, Y.-C. Liu, M.-H. Chiang, W. E. van Zyl, J.-Y. Saillard, and C. W. Liu (2015). Chem. Eur. J. 21, 8369.CrossRefGoogle Scholar
  28. 28.
    V. Schramm (1978). Inorg. Chem. 17, 714.CrossRefGoogle Scholar
  29. 29.
    A. Bonnot, M. Knorr, F. Guyon, M. M. Kubicki, Y. Rousselin, C. Strohmann, D. Fortin, and P. D. Harvey (2016). Cryst. Growth Des. 16, 774.CrossRefGoogle Scholar
  30. 30.
    J. C. Dyason, P. C. Healy, L. M. Engelhardt, C. Pakawatchai, V. A. Patrick, C. L. Raston, and A. H. White (1985). J. Chem. Soc. Dalton Trans. 4, 831.CrossRefGoogle Scholar
  31. 31.
    J. S. Filippo Jr., L. E. Zyontz, and J. Potenza (1975). Inorg. Chem. 14, 1667.CrossRefGoogle Scholar
  32. 32.
    L. Naldini, F. Demartin, M. Manassero, M. Sansoni, G. Rassu, and M. A. Zoroddu (1985). J. Organomet. Chem. 279, C42.CrossRefGoogle Scholar
  33. 33.
    P. D. Harvey and M. Knorr (2015). J. Cluster Sci. 26, 411.CrossRefGoogle Scholar
  34. 34.
    C. Latouche, C. W. Liu, and J.-Y. Saillard (2014). J. Cluster Sci. 25, 147.CrossRefGoogle Scholar
  35. 35.
    B. K. Teo and D. M. Barnes (1976). Inorg. Nucl. Chem. Lett. 7, 681.CrossRefGoogle Scholar
  36. 36.
    B. K. Teo and J. C. Calabrese (1976). Inorg. Chem. 15, 2474.CrossRefGoogle Scholar
  37. 37.
    C. K. Ryu, M. Vitale, and P. C. Ford (1993). Inorg. Chem. 32, 874.CrossRefGoogle Scholar
  38. 38.
    E. Lindsayz and P. C. Ford (1996). Inorg. Chim. Acta 242, 5l.Google Scholar
  39. 39.
    F. Angelis, S. Fantacci, A. Sgamellotti, E. Cariati, R. Ugo, and P. C. Ford (2006). Inorg. Chem. 45, 10576.CrossRefGoogle Scholar
  40. 40.
    M. Vitale and P. C. Ford (2001). Coord. Chem. Rev. 219, 3.CrossRefGoogle Scholar
  41. 41.
    P. C. Ford, E. Cariati, and J. Bourassa (1999). Chem. Rev. 99, 3625.CrossRefGoogle Scholar
  42. 42.
    P. Roesch, J. Nitsch, M. Lutz, J. Wiecko, A. Steffen, and C. Müller (2014). Inorg. Chem. 53, 9855.CrossRefGoogle Scholar
  43. 43.
    W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen (1984). Phys. Rev. Lett. 52, 2141.CrossRefGoogle Scholar
  44. 44.
    S. J. Bjjzfrnholm, O. Borggreen, K. Echt, J. Hansen, J. Pedersen, and H. D. Rasmussen (1991). Z. Phys. D 19, 47.CrossRefGoogle Scholar
  45. 45.
    K. Clemenger (1985). Phys. Rev. B 32, 1359.CrossRefGoogle Scholar
  46. 46.
    W. A. de Heer (1993). Rev. Mod. Phys. 65, 611.CrossRefGoogle Scholar
  47. 47.
    M. Brack (1993). Rev. Mod. Phys. 65, 677.CrossRefGoogle Scholar
  48. 48.
    B. K. Teo and H. Zhang (1991). Proc. Natl. Acad. Sci. 88, 5067.CrossRefGoogle Scholar
  49. 49.
    B. K. Teo and H. Zhang (1995). Coord. Chem. Rev. 143, 611.CrossRefGoogle Scholar
  50. 50.
    B. K. Teo and S.-Y. Yang (2015). J. Cluster Sci. 26, 1923.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.State Key Laboratory of Physical Chemistry of Solid SurfaceXiamen UniversityXiamenChina
  3. 3.College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations