Skip to main content

Advertisement

Log in

Mechanism of the Reverse Water–Gas Shift Reaction Catalyzed by Cu12TM Bimetallic Nanocluster: A Density Functional Theory Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Density functional theory calculations were carried out to investigate Cu12TM (TM = Co, Rh, Ir, Ni, Pd, Pt, Ag, Au) bimetallic metal catalysts for the mechanism of reverse water–gas shift (RWGS) reaction. The three possible reaction pathways relevant to the RWGS reaction are explored, including the CO2 dissociation, carboxyl, and formate mechanisms. Our results indicate that the RWGS reaction prefers to follow the CO2 dissociation mechanism on Cu12TM surfaces. A detailed potential energy diagram of the kinetically favored mechanism is presented that shows that the RDS of reaction are the formation of H2O and carboxyl (HOCO), formate (HCOO) dissociation, respectively. And, Cu12TM (TM = Co, Pt) are lower than other catalysts from the energy barrier of elementary step. Moreover, the catalytic behavior of a Cu12TM cluster is changed significantly due to the modifiers, via the electron transfer from TM to Cu-based cluster, and the activation barrier decreases with doped TM. The turnover frequency of the Cu12Co is the highest value, which thus is more efficiency catalyst to RWGS reaction. To gain insights into the synergistic effect in catalytic activity of the Cu12TM bimetallic cluster, a projected density of states analysis has been performed. Our works will be important for predicting the energetic trends and designing a better catalyst of RWGS reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. S. Wainwright and D. L. Trimm (1995). Catal. Today. 23, 29.

    Article  CAS  Google Scholar 

  2. G. Momen, G. Hermosillaa, A. Michaua, M. Ponsc, M. Firdaoussc, and K. Hassounia (2009). Int. J. Hydrogen Energy. 34, 3799.

    Article  CAS  Google Scholar 

  3. S. H. Hakim, C. Sener, A. C. Alba-Rubio, T. M. Gostanian, B. J. O’Neill, F. H. Ribeiro, J. T. Miller, and J. A. Dumesic (2015). J. Catal. 328, 75.

    Article  CAS  Google Scholar 

  4. C. S. Chena, W. H. Cheng, and S. S. Lin (2003). Appl. Catal. A-Gen. 238, 55–67.

    Article  Google Scholar 

  5. R. G. Zhang, B. J. Wang, H. Y. Liu, and L. X. Ling (2011). J. Phys. Chem. C 115, 19811.

    Article  CAS  Google Scholar 

  6. Y. F. Zhao, Y. Yang, C. Mims, C. H. F. Peden, J. Li, and D. H. Mei (2011). J. Catal. 281, 199.

    Article  CAS  Google Scholar 

  7. M. S. Spencer (1995). Catal. Lett. 32, 9.

    Article  CAS  Google Scholar 

  8. K. Shin, D. H. Kim, S. C. Yeo, and H. M. Lee (2012). Catal. Today. 185, 94.

    Article  CAS  Google Scholar 

  9. J. Knudsen, A. U. Nilekar, R. T. Vang, J. Schnadt, E. L. Kunkes, J. A. Dumesic, M. Mavrikakis, and F. Besenbacher (2007). J. Am. Chem. Soc. 129, 6485.

    Article  CAS  Google Scholar 

  10. J. Nakamura, J. M. Campbell, and C. T. Campbell (1990). J. Chem. Soc. Faraday Trans. 26, 2725.

    Article  Google Scholar 

  11. X. W. Nie, H. Z. Wang, M. J. Janik, X. W. Guo, and C. S. Song (2016). J. Phys. Chem. C 120, 9364.

    Article  CAS  Google Scholar 

  12. M. J. L. Ginés, A. J. Marchi, and C. R. Apesteguía (1997). Appl. Catal. A-Gen. 154, 155.

    Article  Google Scholar 

  13. S. I. Fujita, M. Usui, and N. Takezawa (1992). J Catal. 134, 1220.

    Article  Google Scholar 

  14. K. H. Ernst, C. T. Campbell, and G. Moretti (1992). J. Catal. 134, 66.

    Article  CAS  Google Scholar 

  15. C. S. Chen, W. H. Cheng, and S. S. Lin (2000). Catal. Lett. 68, 45.

    Article  CAS  Google Scholar 

  16. C. S. Chen and W. H. Cheng (2002). Catal. Lett. 83, 121–126.

    Article  CAS  Google Scholar 

  17. G. C. Wang, L. Jiang, X. Y. Pang, Z. S. Cai, Y. M. Pan, X. Z. Zhao, Y. Morikawa, and J. Nakamura (2003). Surf. Sci. 543, 118.

    Article  CAS  Google Scholar 

  18. G. C. Wang, L. Jiang, Y. H. Zhou, Z. S. Cai, Y. M. Pan, X. Z. Zhao, Y. W. Li, Y. H. Sun, B. Zhong, X. Y. Pang, W. Huang, and K. C. Xie (2003). J. Mol. Struct. 634, 23.

    Article  CAS  Google Scholar 

  19. Y. A. Daza and J. N. Kuhn (2016). RSC Adv. 6, 49675.

    Article  CAS  Google Scholar 

  20. D. H. Mei, L. J. Xu, and G. Henkelman (2008). J. Catal. 258, 44.

    Article  CAS  Google Scholar 

  21. L. Dietz, S. Piccinin, and M. Maestri (2015). J. Phys. Chem. C 119, 4959.

    Article  CAS  Google Scholar 

  22. N. Ishito, K. Hara, K. Nakajima, and A. Fukuokaa (2016). J. Energy Chem. 25, 306.

    Article  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, and J. R. Cheeseman Gaussian 03 (Revision C02) (Gaussian Inc, Pittsburgh, 2009).

    Google Scholar 

  24. W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.

    Article  CAS  Google Scholar 

  25. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.

    Article  CAS  Google Scholar 

  26. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  27. C. Peng, P. Y. Ayala, and S. H. Bernhard (1996). J. Comput. Chem. 17, 49.

    Article  CAS  Google Scholar 

  28. K. P. Huber and G. Herzberg Molecular Spectra and Molecular Structure, vol. 4 (Van Nostrand Reinhold, New York, 1979).

    Book  Google Scholar 

  29. V. L. Mazalova and A. V. Soldatov (2009). J. Phys. Chem. C 113, 9086.

    Article  CAS  Google Scholar 

  30. A. A. Gokhale, J. A. Dumesic, and M. Mavrikakis (2008). J. Am. Chem. Soc. 130, 1402.

    Article  CAS  Google Scholar 

  31. S. Kattel, B. H. Yan, Y. X. Yang, J. G. G. Chen, and P. Liu (2016). J. Am. Chem. Soc. 138, 12440.

    Article  CAS  Google Scholar 

  32. T. Fujitani, Y. Choi, M. Sano, Y. Kushida, and J. Nakamura (2000). J. Phys. Chem. B 104, 1235.

    Article  CAS  Google Scholar 

  33. A. Sotiropoulos, P. K. Milligan, B. C. C. Cowie, and M. Kadodwala (2000). Surf. Sci. 444, 52.

    Article  CAS  Google Scholar 

  34. F. Solymosi (1991). J. Mol. Catal. 65, 337.

    Article  CAS  Google Scholar 

  35. S. G. Wang, X. Y. Liao, D. B. Cao, C. F. Huo, Y. W. Li, J. Wang, and H. Jiao (2007). J. Phys. Chem. C 111, 16934.

    Article  CAS  Google Scholar 

  36. L. Barrio, P. Liu, J. A. Rodriguez, J. M. Campos-Martin, and J. L. G. Fierro (2006). J. Chem. Phys. 125, 164715.

    Article  CAS  Google Scholar 

  37. Y. X. Yang, J. Evans, J. A. Rodriguez, M. G. White, and P. Liu (2010). Phys. Chem. Chem. Phys. 12, 9909.

    Article  CAS  Google Scholar 

  38. B. Hammer and J. K. Norskov (1995). Nature 376, 238.

    Article  CAS  Google Scholar 

  39. C. Amatore and A. Jutand (1999). J. Org. Chem. 576, 254.

    Article  CAS  Google Scholar 

  40. S. A. Kozuch (2012). Comput. Mol. Sci. 2, 795.

    Article  CAS  Google Scholar 

  41. B. Hammer and J. K. Nørskov (1995). Surf. Sci. 343, 211.

    Article  CAS  Google Scholar 

  42. B. Hammer and J. K. Nørskov (2000). Adv. Catal. 45, 71.

    CAS  Google Scholar 

  43. C. Liu and P. Liu (2015). ACS Catal. 5, 1004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “1331” project of Shanxi Province, High School 131 Leading Talent Project of Shanxi, Graduate student innovation project of Shanxi Normal University, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant No. 105088, 2015537, WL2015CXCY-SJ-01) and Shanxi Normal University (WL2015CXCY-YJ-18), Teaching Reform Project of Shanxi Normal University (WL2015 JGXM-YJ-13), Shanxi Normal University graduate student science and technology innovation project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Guo, L. Mechanism of the Reverse Water–Gas Shift Reaction Catalyzed by Cu12TM Bimetallic Nanocluster: A Density Functional Theory Study. J Clust Sci 29, 867–877 (2018). https://doi.org/10.1007/s10876-018-1346-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1346-x

Keywords

Navigation