Mechanism of the Reverse Water–Gas Shift Reaction Catalyzed by Cu12TM Bimetallic Nanocluster: A Density Functional Theory Study

Original Paper


Density functional theory calculations were carried out to investigate Cu12TM (TM = Co, Rh, Ir, Ni, Pd, Pt, Ag, Au) bimetallic metal catalysts for the mechanism of reverse water–gas shift (RWGS) reaction. The three possible reaction pathways relevant to the RWGS reaction are explored, including the CO2 dissociation, carboxyl, and formate mechanisms. Our results indicate that the RWGS reaction prefers to follow the CO2 dissociation mechanism on Cu12TM surfaces. A detailed potential energy diagram of the kinetically favored mechanism is presented that shows that the RDS of reaction are the formation of H2O and carboxyl (HOCO), formate (HCOO) dissociation, respectively. And, Cu12TM (TM = Co, Pt) are lower than other catalysts from the energy barrier of elementary step. Moreover, the catalytic behavior of a Cu12TM cluster is changed significantly due to the modifiers, via the electron transfer from TM to Cu-based cluster, and the activation barrier decreases with doped TM. The turnover frequency of the Cu12Co is the highest value, which thus is more efficiency catalyst to RWGS reaction. To gain insights into the synergistic effect in catalytic activity of the Cu12TM bimetallic cluster, a projected density of states analysis has been performed. Our works will be important for predicting the energetic trends and designing a better catalyst of RWGS reaction.


Cu12TM bimetallic nanocluster RWGS reaction Mechanism TOF d-Band center 



This work was financially supported by the “1331” project of Shanxi Province, High School 131 Leading Talent Project of Shanxi, Graduate student innovation project of Shanxi Normal University, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant No. 105088, 2015537, WL2015CXCY-SJ-01) and Shanxi Normal University (WL2015CXCY-YJ-18), Teaching Reform Project of Shanxi Normal University (WL2015 JGXM-YJ-13), Shanxi Normal University graduate student science and technology innovation project.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    M. S. Wainwright and D. L. Trimm (1995). Catal. Today. 23, 29.CrossRefGoogle Scholar
  2. 2.
    G. Momen, G. Hermosillaa, A. Michaua, M. Ponsc, M. Firdaoussc, and K. Hassounia (2009). Int. J. Hydrogen Energy. 34, 3799.CrossRefGoogle Scholar
  3. 3.
    S. H. Hakim, C. Sener, A. C. Alba-Rubio, T. M. Gostanian, B. J. O’Neill, F. H. Ribeiro, J. T. Miller, and J. A. Dumesic (2015). J. Catal. 328, 75.CrossRefGoogle Scholar
  4. 4.
    C. S. Chena, W. H. Cheng, and S. S. Lin (2003). Appl. Catal. A-Gen. 238, 55–67.CrossRefGoogle Scholar
  5. 5.
    R. G. Zhang, B. J. Wang, H. Y. Liu, and L. X. Ling (2011). J. Phys. Chem. C 115, 19811.CrossRefGoogle Scholar
  6. 6.
    Y. F. Zhao, Y. Yang, C. Mims, C. H. F. Peden, J. Li, and D. H. Mei (2011). J. Catal. 281, 199.CrossRefGoogle Scholar
  7. 7.
    M. S. Spencer (1995). Catal. Lett. 32, 9.CrossRefGoogle Scholar
  8. 8.
    K. Shin, D. H. Kim, S. C. Yeo, and H. M. Lee (2012). Catal. Today. 185, 94.CrossRefGoogle Scholar
  9. 9.
    J. Knudsen, A. U. Nilekar, R. T. Vang, J. Schnadt, E. L. Kunkes, J. A. Dumesic, M. Mavrikakis, and F. Besenbacher (2007). J. Am. Chem. Soc. 129, 6485.CrossRefGoogle Scholar
  10. 10.
    J. Nakamura, J. M. Campbell, and C. T. Campbell (1990). J. Chem. Soc. Faraday Trans. 26, 2725.CrossRefGoogle Scholar
  11. 11.
    X. W. Nie, H. Z. Wang, M. J. Janik, X. W. Guo, and C. S. Song (2016). J. Phys. Chem. C 120, 9364.CrossRefGoogle Scholar
  12. 12.
    M. J. L. Ginés, A. J. Marchi, and C. R. Apesteguía (1997). Appl. Catal. A-Gen. 154, 155.CrossRefGoogle Scholar
  13. 13.
    S. I. Fujita, M. Usui, and N. Takezawa (1992). J Catal. 134, 1220.CrossRefGoogle Scholar
  14. 14.
    K. H. Ernst, C. T. Campbell, and G. Moretti (1992). J. Catal. 134, 66.CrossRefGoogle Scholar
  15. 15.
    C. S. Chen, W. H. Cheng, and S. S. Lin (2000). Catal. Lett. 68, 45.CrossRefGoogle Scholar
  16. 16.
    C. S. Chen and W. H. Cheng (2002). Catal. Lett. 83, 121–126.CrossRefGoogle Scholar
  17. 17.
    G. C. Wang, L. Jiang, X. Y. Pang, Z. S. Cai, Y. M. Pan, X. Z. Zhao, Y. Morikawa, and J. Nakamura (2003). Surf. Sci. 543, 118.CrossRefGoogle Scholar
  18. 18.
    G. C. Wang, L. Jiang, Y. H. Zhou, Z. S. Cai, Y. M. Pan, X. Z. Zhao, Y. W. Li, Y. H. Sun, B. Zhong, X. Y. Pang, W. Huang, and K. C. Xie (2003). J. Mol. Struct. 634, 23.CrossRefGoogle Scholar
  19. 19.
    Y. A. Daza and J. N. Kuhn (2016). RSC Adv. 6, 49675.CrossRefGoogle Scholar
  20. 20.
    D. H. Mei, L. J. Xu, and G. Henkelman (2008). J. Catal. 258, 44.CrossRefGoogle Scholar
  21. 21.
    L. Dietz, S. Piccinin, and M. Maestri (2015). J. Phys. Chem. C 119, 4959.CrossRefGoogle Scholar
  22. 22.
    N. Ishito, K. Hara, K. Nakajima, and A. Fukuokaa (2016). J. Energy Chem. 25, 306.CrossRefGoogle Scholar
  23. 23.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, and J. R. Cheeseman Gaussian 03 (Revision C02) (Gaussian Inc, Pittsburgh, 2009).Google Scholar
  24. 24.
    W. R. Wadt and P. J. Hay (1985). J. Chem. Phys. 82, 284.CrossRefGoogle Scholar
  25. 25.
    P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 299.CrossRefGoogle Scholar
  26. 26.
    J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.CrossRefGoogle Scholar
  27. 27.
    C. Peng, P. Y. Ayala, and S. H. Bernhard (1996). J. Comput. Chem. 17, 49.CrossRefGoogle Scholar
  28. 28.
    K. P. Huber and G. Herzberg Molecular Spectra and Molecular Structure, vol. 4 (Van Nostrand Reinhold, New York, 1979).CrossRefGoogle Scholar
  29. 29.
    V. L. Mazalova and A. V. Soldatov (2009). J. Phys. Chem. C 113, 9086.CrossRefGoogle Scholar
  30. 30.
    A. A. Gokhale, J. A. Dumesic, and M. Mavrikakis (2008). J. Am. Chem. Soc. 130, 1402.CrossRefGoogle Scholar
  31. 31.
    S. Kattel, B. H. Yan, Y. X. Yang, J. G. G. Chen, and P. Liu (2016). J. Am. Chem. Soc. 138, 12440.CrossRefGoogle Scholar
  32. 32.
    T. Fujitani, Y. Choi, M. Sano, Y. Kushida, and J. Nakamura (2000). J. Phys. Chem. B 104, 1235.CrossRefGoogle Scholar
  33. 33.
    A. Sotiropoulos, P. K. Milligan, B. C. C. Cowie, and M. Kadodwala (2000). Surf. Sci. 444, 52.CrossRefGoogle Scholar
  34. 34.
    F. Solymosi (1991). J. Mol. Catal. 65, 337.CrossRefGoogle Scholar
  35. 35.
    S. G. Wang, X. Y. Liao, D. B. Cao, C. F. Huo, Y. W. Li, J. Wang, and H. Jiao (2007). J. Phys. Chem. C 111, 16934.CrossRefGoogle Scholar
  36. 36.
    L. Barrio, P. Liu, J. A. Rodriguez, J. M. Campos-Martin, and J. L. G. Fierro (2006). J. Chem. Phys. 125, 164715.CrossRefGoogle Scholar
  37. 37.
    Y. X. Yang, J. Evans, J. A. Rodriguez, M. G. White, and P. Liu (2010). Phys. Chem. Chem. Phys. 12, 9909.CrossRefGoogle Scholar
  38. 38.
    B. Hammer and J. K. Norskov (1995). Nature 376, 238.CrossRefGoogle Scholar
  39. 39.
    C. Amatore and A. Jutand (1999). J. Org. Chem. 576, 254.CrossRefGoogle Scholar
  40. 40.
    S. A. Kozuch (2012). Comput. Mol. Sci. 2, 795.CrossRefGoogle Scholar
  41. 41.
    B. Hammer and J. K. Nørskov (1995). Surf. Sci. 343, 211.CrossRefGoogle Scholar
  42. 42.
    B. Hammer and J. K. Nørskov (2000). Adv. Catal. 45, 71.Google Scholar
  43. 43.
    C. Liu and P. Liu (2015). ACS Catal. 5, 1004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of EducationShanxi Normal UniversityLinfenChina
  2. 2.The School of Chemical and Material ScienceShanxi Normal UniversityLinfenChina

Personalised recommendations