Advertisement

Journal of Cluster Science

, Volume 28, Issue 2, pp 703–723 | Cite as

Bimetallic Fe–Au Carbonyl Clusters Derived from Collman’s Reagent: Synthesis, Structure and DFT Analysis of Fe(CO)4(AuNHC)2 and [Au3Fe2(CO)8(NHC)2]

  • Marco Bortoluzzi
  • Cristiana Cesari
  • Iacopo Ciabatti
  • Cristina Femoni
  • Mohammad Hayatifar
  • Maria Carmela Iapalucci
  • Rita Mazzoni
  • Stefano Zacchini
Original Paper

Abstract

The reaction of the Collman’s reagent Na2Fe(CO)4 with two equivalents of Au(NHC)Cl (NHC = IMes, IPr, IBu) in thf results in the bimetallic Fe(CO)4(AuNHC)2 (NHC = IMes, 2; IPr, 3; IBu, 4; IMes = C3N2H2(C6H2Me3)2; IPr = C3N2H2(C6H 3 i Pr2)2; IBu = C3N2H2(CMe3)2) clusters in good yields. Heating 2 in dmf at 100 °C results in the higher nuclearity cluster [Au3Fe2(CO)8(IMes)2] (5). 25 have been fully characterized via IR, 1H and 13C NMR spectroscopies and their structures determined by means of single crystal X-ray crystallography. Gas-phase DFT calculations were carried out on 25 and the model compound cis-Fe(CO)4(AuIDM)2 (6) (IDM = C3N2H2Me2), in order to better understand the metal–metal and metal–ligand interactions in these compounds without the influence of packing forces.

Keywords

Heterometallic clusters Carbonyl Gold Iron N-Heterocyclic carbene 

References

  1. 1.
    W. A. Herrmann (2002). Angew. Chem. Int. Ed. 41, 1290.CrossRefGoogle Scholar
  2. 2.
    R. H. Crabtree (2005). J. Organomet. Chem. 690, 5451.CrossRefGoogle Scholar
  3. 3.
    S. Díez-González and S. P. Nolan (2007). Coord. Chem. Rev. 251, 874.CrossRefGoogle Scholar
  4. 4.
    O. Kühl (2007). Chem. Soc. Rev. 36, 592.CrossRefGoogle Scholar
  5. 5.
    S. T. Liddle, I. S. Edworthy, and P. L. Arnold (2007). Chem. Soc. Rev. 36, 1732.CrossRefGoogle Scholar
  6. 6.
    F. E. Hahn and M. C. Jahnke (2008). Angew. Chem. Int. Ed. 47, 3122.CrossRefGoogle Scholar
  7. 7.
    S. Díez-González, N. Marion, and S. P. Nolan (2009). Chem. Rev. 109, 3612.CrossRefGoogle Scholar
  8. 8.
    H. Jacobsen, A. Correa, A. Poater, C. Costabile, and L. Cavallo (2009). Coord. Chem. Rev. 253, 687.CrossRefGoogle Scholar
  9. 9.
    O. Kühl (2009). Coord. Chem. Rev. 253, 2481.CrossRefGoogle Scholar
  10. 10.
    L.-A. Schaper, S. J. Hock, W. A. Herrmann, and F. E. Kühn (2013). Angew. Chem. Int. Ed. 52, 270.CrossRefGoogle Scholar
  11. 11.
    D. J. Nelson and S. P. Nolan (2013). Chem. Soc. Rev. 42, 6723.CrossRefGoogle Scholar
  12. 12.
    M. N. Hopkinson, C. Richter, M. Schedler, and F. Glorius (2014). Nature 510, 485.CrossRefGoogle Scholar
  13. 13.
    S. P. Nolan N-Heterocyclic Carbenes: Effective Tools for Organometallic Synthesis (Wiley, New York, 2014).CrossRefGoogle Scholar
  14. 14.
    G. C. Vougioukalakis and R. H. Grubbs (2010). Chem. Rev. 110, 1746.CrossRefGoogle Scholar
  15. 15.
    A. Collado, A. Gómez-Suárez, A. R. Martin, A. M. Z. Slawin, and S. P. Nolan (2013). Chem. Commun. 49, 5541.CrossRefGoogle Scholar
  16. 16.
    N. Marion and S. P. Nolan (2007). Chem. Soc. Rev. 107, 3180.CrossRefGoogle Scholar
  17. 17.
    S. P. Nolan (2011). Acc. Chem. Res. 44, 91.CrossRefGoogle Scholar
  18. 18.
    H. G. Raubenheimer and S. Cronje (2008). Chem. Soc. Rev. 37, 1998.CrossRefGoogle Scholar
  19. 19.
    P. J. Barnard, L. E. Wedlock, M. V. Barker, S. J. Berners-Price, D. A. Joyce, B. W. Skelton, and J. H. Steer (2006). Angew. Chem. Int. Ed. 45, 5966.CrossRefGoogle Scholar
  20. 20.
    D. Marchione, L. Belpassi, G. Bistoni, A. Macchioni, F. Tarantelli, and D. Zuccaccia (2014). Organometallics 33, 4200.CrossRefGoogle Scholar
  21. 21.
    D. S. Laitar, P. Müller, T. G. Gray, and J. P. Sadighi (2005). Organometallics 24, 4503.CrossRefGoogle Scholar
  22. 22.
    A. S. K. Hashmi, I. Braun, M. Rudolph, and F. Rominger (2012). Organometallics 31, 644.CrossRefGoogle Scholar
  23. 23.
    A. S. K. Hashmi, M. Wieteck, I. Braun, P. Nösel, L. Jongbloed, M. Rudolph, and F. Rominger (2012). Adv. Synth. Catal. 354, 555.CrossRefGoogle Scholar
  24. 24.
    A. S. K. Hashmi, I. Braun, P. Nösel, J. Schädlich, M. Wieteck, M. Rudolph, and F. Rominger (2012). Angew. Chem. Int. Ed. 51, 4456.CrossRefGoogle Scholar
  25. 25.
    M. M. Hansmann, M. Rudolph, F. Rominger, and A. S. K. Hashmi (2013). Angew. Chem. Int. Ed. 52, 2593.CrossRefGoogle Scholar
  26. 26.
    A. S. K. Hashmi, T. Lauterbach, P. Nösel, M. H. Vilhelmsen, M. Rudoplh, and F. Rominger (2013). Chem. Eur. J. 19, 1058.CrossRefGoogle Scholar
  27. 27.
    M. Alcarazo, T. Stork, A. Anoop, W. Thiel, and A. Fürstner (2010). Angew. Chem. Int. Ed. 49, 2542.CrossRefGoogle Scholar
  28. 28.
    D. J. Gorin, B. D. Sherry, and F. D. Toste (2008). Chem. Rev. 108, 3351.CrossRefGoogle Scholar
  29. 29.
    A. Arcadi (2008). Chem. Rev. 108, 3266.CrossRefGoogle Scholar
  30. 30.
    M. Navarro (2009). Coord. Chem. Rev. 253, 1619.CrossRefGoogle Scholar
  31. 31.
    B. K. Najafabadi and J. F. Corrigan (2015). Chem. Commun. 51, 665.CrossRefGoogle Scholar
  32. 32.
    C. Richter, K. Schaepe, F. Glorius, and B. J. Ravoo (2014). Chem. Commun. 50, 3204.CrossRefGoogle Scholar
  33. 33.
    P. Lara, O. Rivada-Wheelaghan, S. Conejero, R. Poteau, K. Philippot, and B. Chaudret (2011). Angew. Chem. Int. Ed. 50, 12080.CrossRefGoogle Scholar
  34. 34.
    E. A. Baquero, S. Tricard, J. C. Flores, E. de Jesús, and B. Chaudret (2014). Angew. Chem. Int. Ed. 53, 13220.CrossRefGoogle Scholar
  35. 35.
    D. Goinzalez-Galvez, P. Lara, O. Rivada-Wheelaghan, S. Conejero, B. Chaudret, K. Philippot, and P. W. N. M. van Leewen (2007). Catal. Sci. Technol. 36, 592.Google Scholar
  36. 36.
    K. V. S. Ranganath, J. Kloesges, A. H. Schäfer, and F. Glorius (2010). Angew. Chem. Int. Ed. 49, 7786.CrossRefGoogle Scholar
  37. 37.
    J. Vignolle and T. D. Tilley (2009). Chem. Commun. 46, 7230.CrossRefGoogle Scholar
  38. 38.
    X. Ling, N. Schaeffer, S. Roland, and M. P. Pileni (2013). Langmuir 29, 12647.CrossRefGoogle Scholar
  39. 39.
    P. Lara, A. Suárez, V. Collière, K. Philippot, and B. Chaudret (2014). ChemCatChem 6, 87.CrossRefGoogle Scholar
  40. 40.
    J. A. Cabeza and P. García-Álvarez (2011). Chem. Soc. Rev. 40, 5389.CrossRefGoogle Scholar
  41. 41.
    J. L. Durham, W. B. Wilson, D. N. Huh, R. McDonald, and L. F. Szczepura (2015). Chem. Commun. 51, 10536.CrossRefGoogle Scholar
  42. 42.
    J. A. Cabeza, M. Damonte, and M. G. Hernández-Cruz (2012). J. Organomet. Chem. 711, 68.CrossRefGoogle Scholar
  43. 43.
    R. Della Pergola, A. Sironi, A. Rosehr, V. Colombo, and A. Sironi (2014). Inorg. Chem. Commun. 49, 27.CrossRefGoogle Scholar
  44. 44.
    Y. Liu, R. Ganguly, H. V. Huynh, and W. K. Leong (2013). Organometallics 32, 7559.CrossRefGoogle Scholar
  45. 45.
    Y. Liu, R. Ganguly, H. V. Huynh, and W. L. Leong (2013). Angew. Chem. Int. Ed. 52, 12110.CrossRefGoogle Scholar
  46. 46.
    S. Saha and B. Captain (2014). Inorg. Chem. 53, 1210.CrossRefGoogle Scholar
  47. 47.
    L. S. Sharninghausen, B. Q. Mercado, R. H. Crabtree, D. Balcells, and J. Campos (2015). Dalton Trans. 44, 18403.CrossRefGoogle Scholar
  48. 48.
    J. Campos, L. S. Sharninghausen, R. H. Crabtree, and D. Balcells (2014). Angew. Chem. Int. Ed. 53, 12808.CrossRefGoogle Scholar
  49. 49.
    C. E. Ellul, M. F. Mahon, and M. K. Whittlesey (2010). J. Organomet. Chem. 695, 6.CrossRefGoogle Scholar
  50. 50.
    R. D. Adams, J. Tedder, and Y. O. Wong (2015). J. Organomet. Chem. 795, 2.CrossRefGoogle Scholar
  51. 51.
    C.-N. Lin, C.-Y. Huang, C.-C. Yu, Y.-M. Chen, W.-M. Ke, G.-J. Wang, G.-A. Lee, and M. Shieh (2015). Dalton Trans. 44, 16675.CrossRefGoogle Scholar
  52. 52.
    M. K. Karunananda, S. R. Parmelee, G. W. Waldhart, and N. P. Mankand (2015). Organometallics 34, 3857.CrossRefGoogle Scholar
  53. 53.
    S. Banerjee, M. K. Karunananda, S. Bagherzadeh, U. Jayarathne, S. R. Parmelee, G. W. Waldhart, and N. P. Mankand (2014). Inorg. Chem. 53, 11307.CrossRefGoogle Scholar
  54. 54.
    R. D. Adams and G. Elpitiya (2015). Inorg. Chem. 54, 8042.CrossRefGoogle Scholar
  55. 55.
    J. P. Collman (1975). Acc. Chem. Res. 8, 342.CrossRefGoogle Scholar
  56. 56.
    H. B. Chin and R. Bau (1976). J. Am. Chem. Soc. 98, 3434.CrossRefGoogle Scholar
  57. 57.
    C. F. Coffey, J. Lewis, and R. S. Nyholm (1964). J. Chem. Soc. 1741.Google Scholar
  58. 58.
    V. G. Albano, M. Monari, M. C. Iapalucci, and G. Longoni (1993). Inorg. Chim. Acta 213, 183.CrossRefGoogle Scholar
  59. 59.
    C. E. Briant, K. P. Hall, and D. M. P. Mingos (1983). Chem. Commun. 15, 843.CrossRefGoogle Scholar
  60. 60.
    L. W. Arndt, M. Y. Darensbourg, J. P. Fackler, R. J. Lusk, D. O. Marler, and K. A. Youndahl (1985). J. Am. Chem. Soc. 107, 7218.CrossRefGoogle Scholar
  61. 61.
    S. Rudolph, I.-P. Lorenz, and K. Polborn, CSD Communication (Private Communication), CCDC 271793.Google Scholar
  62. 62.
    L. W. Arndt, C. E. Ash, M. Y. Darensbourg, Y. M. Hsiao, C. M. Kim, J. Reibenspies, and K. A. Youngdahl (1990). J. Organomet. Chem. 394, 733.CrossRefGoogle Scholar
  63. 63.
    G. Seidel, B. Gabor, R. Goddard, W. Thiel, and A. Furstner (2014). Angew. Chem. Int. Ed. 53, 879.CrossRefGoogle Scholar
  64. 64.
    H. Braunschweig, P. Brenner, R. D. Dewhurst, M. Kaupp, R. Muller, and S. Ostreicher (2009). Angew. Chem. Int. Ed. 48, 9735.CrossRefGoogle Scholar
  65. 65.
    H. Braunschweig, K. Radacki, and R. Shang (2013). Chem. Commun. 49, 9905.CrossRefGoogle Scholar
  66. 66.
    H. Schmidbaur, W. Graf, and G. Muller (1988). Angew. Chem. Int. Ed. 27, 417.CrossRefGoogle Scholar
  67. 67.
    H. Schmidbaur and A. Schier (2012). Chem. Soc. Rev. 41, 370.CrossRefGoogle Scholar
  68. 68.
    S. S. Pathaneni, and G. R. Desiraju (1993). J. Chem Soc., Dalton Trans. 319.Google Scholar
  69. 69.
    S. Sculfort and P. Braunstein (2011). Chem. Soc. Rev. 40, 2741.CrossRefGoogle Scholar
  70. 70.
    B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echevarría, E. Cremades, F. Barragán, and S. Alvarez (2008). Dalton Trans. 21, 2832.CrossRefGoogle Scholar
  71. 71.
    A. Bondi (1964). J. Phys. Chem. 68, 441.CrossRefGoogle Scholar
  72. 72.
    A. F. Wells Structural Inorganic Chemistry, 5th ed (Claredon, Oxford, 1984), p. 1288.Google Scholar
  73. 73.
    H. Claver and S. P. Nolan (2010). Chem. Commun. 46, 841.CrossRefGoogle Scholar
  74. 74.
    P. Ai, M. Mauro, L. De Cola, A. A. Danopoulos, and P. Braunstein (2016). Angew. Chem. Int. Ed. 55, 3388.CrossRefGoogle Scholar
  75. 75.
    M. T. Dau, J. R. Shakirova, A. J. Karttunen, E. V. Grachova, S. P. Tunik, A. S. Melnikov, T. A. Pakkanen, and I. O. Koshevoy (2014). Inorg. Chem. 53, 4705.CrossRefGoogle Scholar
  76. 76.
    G. S. M. Tong, S. C. F. Kui, H.-Y. Chao, N. Zhu, and C.-M. Che (2009). Chem. Eur. J. 15, 10777.CrossRefGoogle Scholar
  77. 77.
    S. D. Hanna, S. I. Khan, and J. I. Zink (1996). Inorg. Chem. 35, 5813.CrossRefGoogle Scholar
  78. 78.
    P. Ai, A. A. Danopoulos, P. Braunstein, and K Yu Monakhov (2014). Chem. Commun. 50, 103.CrossRefGoogle Scholar
  79. 79.
    P. Ai, C. Gourlaouen, A. A. Danopoulos, and P. Braunstein (2016). Inorg. Chem. 55, 1219.CrossRefGoogle Scholar
  80. 80.
    D. Marchione, L. Belpassi, G. Bistoni, A. Macchioni, F. Tarantelli, and D. Zuccaccia (2014). Organometallics 33, 4208.CrossRefGoogle Scholar
  81. 81.
    R. F. W. Bader in Encyclopedia of Computational Chemistry, Wiley, Chichester, 2002. DOI: 10.1002/0470845015.caa012.
  82. 82.
    S. Zacchini (2011). Eur. J. Inorg. Chem. 2011, 4125.CrossRefGoogle Scholar
  83. 83.
    C. Femoni, M. C. Iapalucci, G. Longoni, C. Tiozzo, and S. Zacchini (2008). Angew. Chem. Int. Ed. 47, 6666.CrossRefGoogle Scholar
  84. 84.
    I. Ciabatti, C. Femoni, M. C. Iapalucci, A. Ienco, G. Longoni, G. Manca, and S. Zacchini (2013). Inorg. Chem. 52, 10559.CrossRefGoogle Scholar
  85. 85.
    M. Bortoluzzi, I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, G. Longoni, and S. Zacchini (2014). Angew. Chem. Int. Ed. 53, 7233.CrossRefGoogle Scholar
  86. 86.
    M. Bortoluzzi, I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, G. Longoni, and S. Zacchini (2014). Dalton Trans. 43, 13471.CrossRefGoogle Scholar
  87. 87.
    I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, A. Ienco, G. Longoni, G. Manca, and S. Zacchini (2014). Inorg. Chem. 53, 9761.CrossRefGoogle Scholar
  88. 88.
    I. Ciabatti, C. Femoni, M. Hayatifar, M. C. Iapalucci, and S. Zacchini (2015). Inorg. Chim. Acta 428, 203.CrossRefGoogle Scholar
  89. 89.
    E. Keller SCHAKAL99 (University of Freiburg, Germany, 1999).Google Scholar
  90. 90.
    G. M. Sheldrick SADABS, Program for Empirical Absorption Correction (University of Göttingen, Germany, 1996).Google Scholar
  91. 91.
    G. M. Sheldrick SHELX97, Program for Crystal Structure Determination (University of Göttingen, Germany, 1997).Google Scholar
  92. 92.
    A. L. Spek (2003). J. Appl. Cryst. 36, 7.CrossRefGoogle Scholar
  93. 93.
    A. L. Spek (2009). Acta Cryst. D65, 148.Google Scholar
  94. 94.
    J.-D. Chai and M. Head-Gordon (2012). Dalton Trans. 41, 5526.CrossRefGoogle Scholar
  95. 95.
    J.-D. Chai and M. Head-Gordon (2008). Phys. Chem. Chem. Phys. 10, 6615.CrossRefGoogle Scholar
  96. 96.
    I. C. Gerber and J. G. Ángyán (2005). Chem. Phys. Lett. 415, 100.CrossRefGoogle Scholar
  97. 97.
    F. Weigend and R. Ahlrichs (2005). Phys. Chem. Chem. Phys. 7, 3297.CrossRefGoogle Scholar
  98. 98.
    D. Andrae, U. Häussermann, M. Dolg, H. Stoll, and H. Preuss (1990). Theor. Chim. Acta 77, 123.CrossRefGoogle Scholar
  99. 99.
    M. Reiherand and A. Wolf Relativistic Quantum Chemistry, 2nd ed (Wiley, Weinheim, 2015).Google Scholar
  100. 100.
    F. E. Jorge, A. Canal Neto, G. G. Camiletti, and S. F. Machado (2009). J. Chem. Phys. 130, 064108.CrossRefGoogle Scholar
  101. 101.
    A. Canal Neto and F. E. Jorge (2013). Chem. Phys. Lett. 582, 158.CrossRefGoogle Scholar
  102. 102.
    Gaussian 09, Revision C.01, Frisch, M. J. et al., Gaussian, Inc., Wallingford CT, 2010.Google Scholar
  103. 103.
    S. Dapprich and G. Frenking (1995). J. Phys. Chem. 99, 9352.CrossRefGoogle Scholar
  104. 104.
    T. Lu and F. Chen (2012). J. Comput. Chem. 33, 580.CrossRefGoogle Scholar
  105. 105.
    M. Xiao and T. Lu (2015). J. Adv. Phys. Chem. 4, 111.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marco Bortoluzzi
    • 1
  • Cristiana Cesari
    • 2
  • Iacopo Ciabatti
    • 2
  • Cristina Femoni
    • 2
  • Mohammad Hayatifar
    • 2
  • Maria Carmela Iapalucci
    • 2
  • Rita Mazzoni
    • 2
  • Stefano Zacchini
    • 2
  1. 1.Dipartimento di Scienze Molecolari e NanosistemiCa’ Foscari University of VeniceMestreItaly
  2. 2.Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaBolognaItaly

Personalised recommendations