Journal of Cluster Science

, Volume 27, Issue 6, pp 1989–1999 | Cite as

Synthesis and Catalytic Evaluation of Silver Nanoparticles Synthesized with Aloysia triphylla Leaf Extract

  • J. Luis López-Miranda
  • S. E. Borjas-Garcia
  • R. Esparza
  • G. Rosas
Original Paper


In this investigation, we report the biosynthesis of the silver nanoparticles using Aloysia triphylla leaves extract. The as-prepared silver nanoparticles were characterized by ultraviolet–visible (Uv–vis) spectroscopy, X-ray diffractometry, scanning electron microscopy and transmission electron microscopy The infrared spectroscopy (FTIR) and Raman spectroscopy techniques were also used to evaluate the chemical groups of the plant extract involved in the silver ions bioreduction. The results indicate that as the plant extract/precursor salt ratio increases, the size of the nanoparticles decreases. Also, as the reaction temperature increases, the reduction rate increased too, resulting in the formation of smaller nanoparticles-size ranges. Uv–vis spectroscopy illustrates absorption peaks in the range of wavelengths of 430–445 nm corresponding to surface plasmon resonance band of silver nanoparticles. The X-ray diffraction (XRD) confirmed the presence of silver solids with fcc structure type. The FTIR analysis showed that the bands corresponding to phenolic compounds and the amide group were involved in the synthesis and stabilization of silver nanoparticles, respectively. The Raman studies showed bands at 1380 and 1610 cm−1, which correspond to the aromatic and amide compounds, confirming the FTIR results. The Uv–vis results indicate the capacity of silver nanoparticles to reduce the methylene blue.


Silver nanoparticles Biosynthesis Aloysia triphylla Methylene blue reduction  Structural characterization 


  1. 1.
    K. M. Kumara, M. Sinhaa, B. K. Mandala, A. R. Ghoshb, K. S. Kumarc, and P. S. Reddy (2012). Spectrochim. Acta A 91, 228–233.CrossRefGoogle Scholar
  2. 2.
    M. J. Ahmed, G. Murtaza, A. Mehmood, and T. M. Bhatti (2015). Mater. Lett. 153, 10–13.CrossRefGoogle Scholar
  3. 3.
    M. Ghaedi, M. Yousefinejad, M. Safarpoor, H. Z. Khafri, and M. K. Purkait (2015). J. Ind. Eng. Chem. 31, 167–172.CrossRefGoogle Scholar
  4. 4.
    V. Dehand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, and B. Sreedhar (2016). Mater. Sci. Eng. C 58, 36–43.CrossRefGoogle Scholar
  5. 5.
    S. Pugazhendhi, P. Sathya, P. K. Palanisamy, and R. Gopalakrishnan (2016). J. Photoch. Photobio. B 159, 155–160.CrossRefGoogle Scholar
  6. 6.
    L. Wang, C. Liu, Y. Wang, H. Xu, H. Su, and X. Cheng (2016). Curr. Appl. Phys. 16, 969–973.CrossRefGoogle Scholar
  7. 7.
    P. R. R. Sre, M. Reka, R. Poovazhagi, M. Kumar, and K. Murugesan (2015). Spectrochim. Acta A 135, 1137–1144.CrossRefGoogle Scholar
  8. 8.
    K. Ramachandran, D. Kalpana, Y. Sathishkumar, Y. S. Lee, K. Ravichandran, and G. G. Kumar (2016). J. Ind. Eng. Chem. 35, 29–35.CrossRefGoogle Scholar
  9. 9.
    M. Nasrollahzadeh, S. M. Sajadi, F. Babaei, and M. Maham (2015). J. Colloid Interf. Sci. 450, 374–380.CrossRefGoogle Scholar
  10. 10.
    A. Rostami-Vartooni, M. Nasrollahzadeh, and M. Alizadeh (2016). J. Alloy. Compd. 680, 309–314.CrossRefGoogle Scholar
  11. 11.
    R. Mata, J. R. Nakkala, and S. R. Sadras (2015). Mater. Sci. Eng. C 51, 216–225.CrossRefGoogle Scholar
  12. 12.
    D. Dinesh, K. Murugan, P. Madhiyazhagan, C. Panneerselvam, P. M. Kumar, M. Nicoletti, W. Jiang, G. Benelli, B. Chandramohan, and U. Suresh (2015). Parasitol. Res. 114, 1519–1529.CrossRefGoogle Scholar
  13. 13.
    P. Madhiyazhagan, K. Murugan, A. N. Kumar, T. Nataraj, D. Dinesh, C. Panneerselvam, J. Subramaniam, P. M. Kumar, U. Suresh, M. Roni, M. Nicoletti, A. A. Alarfaj, A. Higuchi, M. A. Munusamy, and G. Benelli (2015). Parasitol. Res. 114, 4305–4317.CrossRefGoogle Scholar
  14. 14.
    J. Subramaniam, K. Murugan, C. Panneerselvam, K. Kovendan, P. Madhiyazhagan, P. M. Kumar, D. Dinesh, B. Chandramohan, U. Suresh, M. Nicoletti, A. Higuchi, J. S. Hwang, S. Kumar, A. A. Alarfaj, M. A. Munusamy, R. H. Messing, and G. Benelli (2015). Environ. Sci. Pollut. Res. 22, 20067–20083.CrossRefGoogle Scholar
  15. 15.
    A. Jaganathan, K. Murugan, C. Panneerselvam, P. Madhiyazhagan, D. Dinesh, C. Vadivalagan, A. T. Aziz, B. Chandramohan, U. Suresh, R. Rajaganesh, J. Subramaniam, M. Nicoletti, A. Higuchi, A. A. Alarfaj, M. A. Munusamy, S. Kumar, and G. Benelli (2016). Parasitol. Int. 65, 276–284.CrossRefGoogle Scholar
  16. 16.
    K. Rajarama, D. C. Aiswarya, and P. Sureshkumar (2015). Mater. Lett. 138, 251–254.CrossRefGoogle Scholar
  17. 17.
    Y. Mo, Y. Tang, S. Wang, J. Lin, H. Zhang, and D. Luo (2015). Mater. Lett. 144, 165–167.CrossRefGoogle Scholar
  18. 18.
    M. R. Bindhu and M. Umadevi (2015). Spectrochim. Acta A 135, 373–378.CrossRefGoogle Scholar
  19. 19.
    S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram (2016). J. Adv. Res. 7, 17–28.CrossRefGoogle Scholar
  20. 20.
    K. Vijayaraghavan and S. P. K. Nalini (2010). J. Biotechnol. 5, 1098–1110.CrossRefGoogle Scholar
  21. 21.
    K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh (2010). Nanomed. Nanotechnol. Biol. Med. 6, 257–262.CrossRefGoogle Scholar
  22. 22.
    S. Patra, S. Mukherjee, A. K. Barui, A. Ganguly, B. Sreedhar, and C. R. Patra (2015). Mater. Sci. Eng. C 53, 298–309.CrossRefGoogle Scholar
  23. 23.
    V. Sujitha, K. Murugan, M. Paulpandi, C. Panneerselvam, U. Suresh, M. Roni, M. Nicoletti, A. Higuchi, P. Madhiyazhagan, J. Subramaniam, D. Dinesh, C. Vadivalagan, B. Chandramohan, A. A. Alarfaj, M. A. Munusamy, D. R. Barnard, and G. Benelli (2015). Parasitol. Res. 114, 3315–3325.CrossRefGoogle Scholar
  24. 24.
    S. Shivaji, S. Madhu, and S. Singh (2011). Process Biochem. 46, 1800–1807.CrossRefGoogle Scholar
  25. 25.
    A. Syed, S. Saraswati, G. C. Kundu, and A. Ahmad (2013). Spectrochim. Acta A 114, 144–147.CrossRefGoogle Scholar
  26. 26.
    K. Murugan, C. M. Samidoss, C. Panneerselvam, A. Higuchi, M. Roni, U. Suresh, B. Chandramohan, J. Subramaniam, P. Madhiyazhagan, D. Dinesh, R. Rajaganesh, A. A. Alarfaj, M. Nicoletti, S. Kumar, H. Wei, A. Canale, H. Mehlhorn, and G. Benelli (2015). Parasitol. Res. 114, 4087–4097.CrossRefGoogle Scholar
  27. 27.
    R. Rajan, K. Chandran, S. L. Harper, S. Yun, and P. T. Kalaichelvan (2015). Ind. Crop. Prod. 70, 356–373.CrossRefGoogle Scholar
  28. 28.
    G. Benelli (2016). Parasitol. Res. 115, 23–34.CrossRefGoogle Scholar
  29. 29.
    J. Song and B. Kim (2009). Bioproc. Biosyst. Eng. 32, 79–84.CrossRefGoogle Scholar
  30. 30.
    R. Amooaghaie, M. R. Saeri, and M. Azizi (2015). Ecotox. Environ. Safe. 120, 400–408.CrossRefGoogle Scholar
  31. 31.
    K. D. Arunachalam, S. K. Annamalai, and S. Hari (2013). Int. J. Nanomed. 8, 1307–1315.CrossRefGoogle Scholar
  32. 32.
    E. Zamorano-Ponce, C. Morales, D. Ramos, C. Sepulveda, S. Cares, P. Rivera, J. Fernandez, and M. A. Carballo (2006). Mutat. Res. 603, 145–150.CrossRefGoogle Scholar
  33. 33.
    A. Carnat, A. P. Carnat, D. Fraiss, and J. L. Lamaison (1999). Fitoterapia 70, 44–49.CrossRefGoogle Scholar
  34. 34.
    R. H. Olmedo, V. Nepote, and N. R. Grosso (2012). J. Am. Oil Chem. Soc. 89, 2195–2205.CrossRefGoogle Scholar
  35. 35.
    J. Grassmann (2005). Vitam. Horm. 72, 505–535.CrossRefGoogle Scholar
  36. 36.
    E. Rodríguez León, E. Larios Rodríguez, C. Rodríguez Beas, G. Plascencia-Villa, R.A. Iñiguez Palomares (2016) J. Nanomater. 2016 10 pages.Google Scholar
  37. 37.
    T. Robinson, G. McMullan, R. Marchant, and P. Nigam (2001). Bioresour. Technol. 77, 247–255.CrossRefGoogle Scholar
  38. 38.
    S. Joseph and B. Mathew (2015). J. Mol. Liq. 204, 184–191.CrossRefGoogle Scholar
  39. 39.
    K. Tahir, S. Nazir, B. Li, A. U. Khan, Z. U. H. Khan, A. Ahmad, and F. U. Khan (2015). Sep. Purif. Technol. 150, 316–324.CrossRefGoogle Scholar
  40. 40.
    S. Ashokkumar, S. Ravi, V. Kathiravan, and S. Velmurugan (2014). Spectrochim. Acta A 121, 88–93.CrossRefGoogle Scholar
  41. 41.
    M. Ghaffari-Moghaddam and R. Hadi-Dabanlou (2014). J. Ind. Eng. Chem. 20, 739–744.CrossRefGoogle Scholar
  42. 42.
    S. P. Dubey, M. Lahtinen, and M. Sillanpää (2010). Colloid Surf. A 364, 34–41.CrossRefGoogle Scholar
  43. 43.
    S. M. Ghoreishi, M. Behpour, and M. Khayatkashani (2011). Physica. E 44, 97–104.CrossRefGoogle Scholar
  44. 44.
    V. Ahluwalia, J. Kumar, R. Sisodia, N. A. Shakil, and S. Walia (2014). Ind. Crop. Prod. 55, 202–206.CrossRefGoogle Scholar
  45. 45.
    N. Yang and W. H. Li (2013). Ind. Crop. Prod. 48, 81–88.CrossRefGoogle Scholar
  46. 46.
    B. Ulug, M. H. Turkdemir, A. Cicek, and A. Mete (2015). Spectrochim. Acta A 135, 153–161.CrossRefGoogle Scholar
  47. 47.
    G. Suresh, P. H. Gunasekar, D. Kokila, D. Prabhu, D. Dinesh, N. Ravichandran, B. Ramesh, A. Koodalingam, and G. V. Siva (2014). Spectrochim. Acta A 127, 61–66.CrossRefGoogle Scholar
  48. 48.
    M. Amin, F. Iram, M. S. Iqbal, M. Z. Saeed, M. Raza, and S. Alam (2013). Carbohyd. Polym. 92, 1896–1900.CrossRefGoogle Scholar
  49. 49.
    P. R. R. Sre, M. Reka, R. Poovazhagi, M. A. Kumar, and K. Murugesan (2015). Spectrochim. Acta A 135, 1137–1144.CrossRefGoogle Scholar
  50. 50.
    B. Sadeghi, A. Rostami, and S. S. Momeni (2015). Spectrochim. Acta A 134, 326–332.CrossRefGoogle Scholar
  51. 51.
    P. Mukherjee, M. Roy, B. P. Mandal, G. K. Dey, P. K. Mukherjee, J. Ghatak, A. K. Tyagiand, and S. P. Kale (2008). Nanotechnology 19, 1–7.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. Luis López-Miranda
    • 1
  • S. E. Borjas-Garcia
    • 2
  • R. Esparza
    • 3
  • G. Rosas
    • 1
  1. 1.Instituto de Investigaciones MetalúrgicasUMSNHMoreliaMexico
  2. 2.Instituto de Física y MatemáticasUMSNHMoreliaMexico
  3. 3.Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoSantiago De QuerétaroMexico

Personalised recommendations