Advertisement

Journal of Cluster Science

, Volume 28, Issue 1, pp 133–148 | Cite as

Conjugation of Au Nanoparticles with Chlorambucil for Improved Anticancer Activity

  • I. S. Vijayashree
  • P. Niranjana
  • G. Prabhu
  • V. V. Sureshbabu
  • J. Manjanna
Original Paper

Abstract

Gold nanoparticles (AuNPs) of 30–40 nm in size has been prepared using A. hirsutus leaves extract as reducing agent for Au3+ ions under microwave irradiation from 60 to 360 s. These biocapped AuNPs were effectively conjugated with activated folic acid (FA, receptor) and chlorambucil (CHL, anticancer drug) molecules. The formation of AuNPs–FA–CHL was confirmed from different characterization techniques such as XRD, UV–Visible spectra, FT-IR and TEM images. The anticancer activity of these bioconjugated AuNPs was tested against human cancer cell lines (HeLa, RKO and A549) in comparison with normal epithelial cells (Vero). Unlike AuNPs and CHL alone, AuNPs–FA–CHL showed high toxicity towards human cancer cells by significantly decreasing the percentage viability of cells. Furthermore, the amount of drug released was found to be maximum at an ideal tumor environment pH 5.3.

Keywords

A. hirsutus extract Microwave irradiation Gold nanoparticles Bioconjugation Anticancer activity 

References

  1. 1.
    M. O. Abdel, M. B. Hadeel, E. A. Sameer, A. D. Zoheir, and F. E. Mohamed (2012). Cancer Cell Int. 12, 1.CrossRefGoogle Scholar
  2. 2.
    F. Jacques, D. S. Coralie, Y. Nouara, T. Jean, S. Kevin, C. Henri, and G. Nicolas (2014). ACS Chem. Neurosci. 5, 216.CrossRefGoogle Scholar
  3. 3.
    P. C. Chen, C. M. Sandra, and K. O. Adegboyega (2008). Nanotechnol. Sci. Appl. 1, 45.CrossRefGoogle Scholar
  4. 4.
    R. K. O’Reilly (2007). Phil. Trans. R. Soc. A 365, 2863.CrossRefGoogle Scholar
  5. 5.
    A. F. Robert (2005). Nanomed. Nanotechnol. 1, 2.CrossRefGoogle Scholar
  6. 6.
    S. K. Sahoo, S. Parveen, and J. J. Panda (2007). Nanomedicine 3, 20.Google Scholar
  7. 7.
    P. Dan, M. K. Jeffrey, H. Seungpyo, C. F. Omid, M. Rimona, and L. Robert (2007). Nature Nanotechnol. 2, 751.CrossRefGoogle Scholar
  8. 8.
    C. Laura, B. Luisa, G. Felisa, A. M. Jesús, and B. Antonio (2010). Chem. Eng. J. 164, 92.CrossRefGoogle Scholar
  9. 9.
    D. Raghunandan, B. Ravishankar, G. Sharanabasava, D. R. Mahesh, V. Harsoor, M. S. Yatagatti, M. Bhagawanraju, and A. Venkataraman (2011). Cancer Nanotechnol. 2, 57.CrossRefGoogle Scholar
  10. 10.
    D. S. Balaji, S. Basavaraja, D. Raghunandan, D. B. Mahesh, K. P. Belawadi, and V. Abbaraju (2008). Sci. Technol. Adv. Mater. 9, 1.Google Scholar
  11. 11.
    J. Hongje, R. Soo-Ryoon, K. Kostas, W. H. Sang, and M. Dal-Hee (2013). Biomaterials 34, 3503.CrossRefGoogle Scholar
  12. 12.
    T. Ciprian, S. Olga, O. Anamaria, D. Mircea, P. Bobe, M. Ofelia, S. Sergiu, F. Adrian, P. Emoke, A. Mihaela, K. Gabriel, C. Victor, B. N. Ioana, and I. Alexandru (2012). J. Gastrointest. Liver Dis. 21, 187.Google Scholar
  13. 13.
    D. G. Jacob, P. K. Bishnu, and R. Z. Eugene (2007). J. Am. Chem. Soc. 129, 11653.CrossRefGoogle Scholar
  14. 14.
    D. A. Marco, I. E. Keith, and B. Shankar (2014). J. Am. Chem. Soc. 136, 5860.CrossRefGoogle Scholar
  15. 15.
    B. A. Kamen and A. Capdevila (1986). Proc. Natl. Acad. Sci. 83, 5983.CrossRefGoogle Scholar
  16. 16.
    B. Fadeel and A. E. Bennett (2010). Adv. Drug Deliv. Rev. 62, 362.CrossRefGoogle Scholar
  17. 17.
    G. Steinberg and R. F. Borch (2001). J. Med. Chem. 44, 69.CrossRefGoogle Scholar
  18. 18.
    Y. Rui, S. Wang, P. S. Low, and D. H. Thompson (1998). J. Am. Chem. Soc. 120, 11213.CrossRefGoogle Scholar
  19. 19.
    P. Sunil, O. Goldie, M. Ashmi, S. Ritu, T. Mukeshchand, and S. Madhuri (2013). J. Mater. Chem. B 1, 1361.CrossRefGoogle Scholar
  20. 20.
    U. Chiara, B. Daniele, L. Giada, H. Iris, P. Christine, B. Giovanni, E. U. Ronald, and K. James (2009). Part. Fiber Toxicol. 6, 1.CrossRefGoogle Scholar
  21. 21.
    M. G. Madhura, K. Islam, and M. G. Sushama (1998). Biochim. et Biophys. Acta 1381, 256.CrossRefGoogle Scholar
  22. 22.
    M. Paul (1996). Langmuir 12, 788.CrossRefGoogle Scholar
  23. 23.
    L. Stephan and A. E. Mostafa (1999). J. Phys. Chem. B 103, 4212.CrossRefGoogle Scholar
  24. 24.
    S. Yallappa, J. Manjanna, M. A. Sindhe, N. D. Satyanarayan, S. N. Pramod, and K. Nagaraja (2013). Spectrochim. Acta A 110, 108.CrossRefGoogle Scholar
  25. 25.
    T. Y. Suman, S. R. Radhika, R. Ramkumar, C. Rajthilak, and P. Perumal (2014). Spectrochim. Acta A 118, 11.CrossRefGoogle Scholar
  26. 26.
    S. Jain, D. G. Hirst, and J. M. Sullivan (2012). Br. J. Radiol. 85, 101.CrossRefGoogle Scholar
  27. 27.
    T. Bhuvaneswari, M. Thiyagarajan, N. Geetha, and P. Venkatachalam (2014). Acta Trop. 135, 55.CrossRefGoogle Scholar
  28. 28.
    T. Y. Suman, D. Elumalai, P. K. Kaleena, and R. S. R. Radhika (2013). Ind. Crops Prod. 47, 239.CrossRefGoogle Scholar
  29. 29.
    Y. S. Jae, K. J. Hyeon, and S. K. Beom (2009). Process Biochem. 44, 1133.CrossRefGoogle Scholar
  30. 30.
    J. Bingbing, B. B. John, and L. Bingyun (2009). Nanotechnol. Sci. Appl. 2, 21.CrossRefGoogle Scholar
  31. 31.
    K. Mohamed, W. Y. Meng, H. Eliza, M. Dusica, and S. Ursula (2015). Thno 5, 357.Google Scholar
  32. 32.
    M. Ashmi, P. Sunil, T. Mukeshchand, J. Dhanashree, and S. Madhuri (2014). J. Mater. Chem. B 2, 698.CrossRefGoogle Scholar
  33. 33.
    K. Gopinath, K. S. Venkatesh, R. Ilangovan, K. Sankaranarayanan, and A. Arumugam (2013). Ind. Crops Prod. 50, 737.CrossRefGoogle Scholar
  34. 34.
    C. D. Erik, A. M. Megan, H. Xiaohua, K. Bin, and A. E. Mustafa (2011). Chem. Soc. Rev. 40, 3391.CrossRefGoogle Scholar
  35. 35.
    A. D. Mubarak, N. Thajuddin, K. Jeganathan, and M. Gunasekaran (2011). Colloids Surf. B 85, 360.CrossRefGoogle Scholar
  36. 36.
    M. Aradhana, K. Madhuree, P. Shipra, C. Vasvi, K. C. Gupta, and C. S. Nautiyal (2014). Bioresour. Technol. 166, 235.CrossRefGoogle Scholar
  37. 37.
    B. N. Kannan and S. Natarajan (2010). Mater. Charact. 61, 1232.CrossRefGoogle Scholar
  38. 38.
    C. Jingyi, S. Fusayo, J. W. Benjamin, H. Cang, J. C. Michael, Y. L. Zhi, A. Leslie, Z. Hui, B. K. Michael, L. Xingde, and X. Younan (2005). Nano Lett. 5, 473.CrossRefGoogle Scholar
  39. 39.
    M. F. Jesus, C. B. Catherine, O. R. Mathis, and S. G. C. Adam (2006). Langmuir 22, 3286.CrossRefGoogle Scholar
  40. 40.
    D. B. Sarah, N. Paola, S. Jo-Ann, S. David, R. E. Paul, V. Balaji, J. F. David, A. P. Jane, G. Duncan, and J. W. Nial (2010). J. Am. Chem. Soc. 132, 4678.CrossRefGoogle Scholar
  41. 41.
    N. H. Dong, H. Y. Dae, M. Ho-Jin, B. L. Jung, S. B. Min, C. L. Sang, J. L. Won, S. In-Cheol, and K. Keun (2012). Biomaterials 33, 856.CrossRefGoogle Scholar
  42. 42.
    A. Jaganathan, K. Murugan, C. Panneerselvam, P. Madhiyazhagan, D. Dinesh, C. Vadivalagan, A. T. Aziz, B. Chandramohan, U. Suresh, R. Rajaganesh, J. Subramaniam, M. Nicoletti, A. Higuchi, A. A. Alarfaj, M. A. Munusamy, S. Kumar, and G. Benelli (2016). Parasitol. Int. 65, (3), 276.CrossRefGoogle Scholar
  43. 43.
    K. Murugana, C. Panneerselvamb, C. M. Samidossa, P. Madhiyazhagana, U. Suresha, M. Ronia, B. Chandramohana, J. Subramaniama, D. Dinesha, R. Rajaganesha, M. Paulpandia, H. Weic, A. T. Azizb, M. S. Alsalhid, S. Devanesand, M. Nicolettie, R. Pavelaf, and A. Canaleg (2016). Res. Vet. Sci. 106, 14.CrossRefGoogle Scholar
  44. 44.
    G. Benelli, A. L. Iacono, A. Canale, and H. Mehlhorn (2016). Parasitol. Res. 115, 2131.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • I. S. Vijayashree
    • 1
  • P. Niranjana
    • 1
  • G. Prabhu
    • 2
  • V. V. Sureshbabu
    • 2
  • J. Manjanna
    • 3
  1. 1.Department of BiochemistryKuvempu UniversityShankaraghattaIndia
  2. 2.Department of Chemistry, Central College CampusBangalore UniversityBangaloreIndia
  3. 3.Department of ChemistryRani Channamma UniversityBelagaviIndia

Personalised recommendations