Advertisement

Journal of Cluster Science

, Volume 27, Issue 5, pp 1751–1762 | Cite as

Elaboration, Structural, Vibrational, DSC Investigations and Hirshfeld Surface Analysis of New Organic–Inorganic Hybrid Compound: [H2mela]Cu2Br6

  • Radhia Mesbeh
  • Besma Hamdi
  • Ridha Zouari
Original Paper
  • 116 Downloads

Abstract

The present paper accounts for the synthesis, crystal structure, differential scanning calorimetry and vibrational spectroscopy of a new compound (1,3,5-triazinidium-2,4,6-triamine) hexabromidodicuprate (II) grown at room temperature by slow evaporation of aqueous solution. From X-ray diffraction data collected at room temperature, it is concluded that it crystallizes in the monoclinic system (P21/c space group). The anion and the cation are linked by N–H···Br hydrogen bonds. Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed. The differential scanning calorimetric has also been investigated. Hirshfeld surfaces were used to confirm the existence of inter-molecular interactions in the compound.

Keywords

Copper (II) Organic–inorganic hybrid material Thermal measurement Hirshfeld surfaces 

Notes

Acknowledgments

The authors thank the members of units of common services, at the University of Sfax for their assistance in the measurements for X-ray diffraction. The authors are also thankful to Prof Hamadi KHEMAKHEM, for his co-operating in the Raman spectroscopy measurement.

Supplementary material

10876_2016_1041_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)

References

  1. 1.
    H. Zhang, X. M. Wang, K. C. Zhang, and B. K. Teo (1999). Coord. Chem. Rev. 183, 157.CrossRefGoogle Scholar
  2. 2.
    T. Akutagawa and T. Nakamura (2002). Coord. Chem. Rev. 226, 3.CrossRefGoogle Scholar
  3. 3.
    N. Robertson and L. Cronin (2002). Coord. Chem. Rev. 227, 93.CrossRefGoogle Scholar
  4. 4.
    K. Wang and E. I. Stiefel (2001). Science 291, 106.CrossRefGoogle Scholar
  5. 5.
    A. Shapiro, C. P. Landee, M. M. Turnbull, J. Jornet, M. Deumal, J. J. Novoa, M. A. Robb, and W. Lewis (2007). J. Am. Chem. Soc. 129, 952.CrossRefGoogle Scholar
  6. 6.
    L. Liu and M. M. Turnbull (2007). Inorg. Chem. 46, 11254.CrossRefGoogle Scholar
  7. 7.
    J. Zieba-Palus (1999). J. Mol. Struct. 511, 327.CrossRefGoogle Scholar
  8. 8.
    M. K. Marchewka, J. Janczak, S. Debrus, J. Baran, and H. Ratajczak (2003). Solid State Sci. 5, 643.CrossRefGoogle Scholar
  9. 9.
    M. K. Marchewka, J. Baran, A. Pietraszko, A. Haznar, S. Debrus, and H. Ratajczak (2003). Solid State Sci. 5, 509.CrossRefGoogle Scholar
  10. 10.
    M. K. Marchewka and H. Ratajczak (2002). Bull. Pol. Acad. Sci. Chem. 3, 335.Google Scholar
  11. 11.
    R. J. Meier, A. Tiller, and S. A. M. Vanhommerig (1995). J. Phys. Chem. 99, 5457.CrossRefGoogle Scholar
  12. 12.
    W. J. Jones and W. J. Orville-Thomas (1959). Trans. Faraday Soc. 55, 203.CrossRefGoogle Scholar
  13. 13.
    P. J. Larkin, M. P. Makowski, N. B. Colthup, and L. A. Food (1998). Vib. Spectrosc. 17, 53.CrossRefGoogle Scholar
  14. 14.
    R. J. Meier, J. R. Maple, M. J. Hwang, and A. T. Hagler (1995). J. Phys. Chem. 99, 5445.CrossRefGoogle Scholar
  15. 15.
    J. R. Schneider and B. Schrader (1975). J. Mol. Struct. 29, 1.CrossRefGoogle Scholar
  16. 16.
    P. J. Larkin, M. P. Makowski, and N. B. Colthoup (1999). Spectrochim. Acta 55A, 1011.CrossRefGoogle Scholar
  17. 17.
    M. P. Fernandez-Liencres, A. Navarro, J. J. Lopez-Gonzalez, M. Fernandez-Gomez, J. Tomkinson, and G. J. Kearley (2001). Chem. Phys. 266, 1.CrossRefGoogle Scholar
  18. 18.
    R. D. Willett (1986). Inorg. Chem. 25, 1918.CrossRefGoogle Scholar
  19. 19.
    R. D. Willett, T. Grigereit, K. E. Halvorson, and B. Scott (1987). Proc. Indian Acad. Sci. 98, 147.Google Scholar
  20. 20.
    B. Scott and R. D. Willett (1987). J. Appl. Phys. 61, 3289.CrossRefGoogle Scholar
  21. 21.
    B. Scott and R. D. Willett (1988). Inorg. Chim. Acta 141, 193.CrossRefGoogle Scholar
  22. 22.
    T. Grigereit, J. E. Drumheller, B. Scott, G. Pon, and R. D. Willett (1992). J. Magn. Magn. Mater. 1, 104.Google Scholar
  23. 23.
    Bruker, APEX2 and SAINT. Bruker AXS Inc, Wisconsin, USA, Madison, 2009.Google Scholar
  24. 24.
    G. M. Sheldrick (2008). SHELXS-97. Acta cryst. 64, 112.CrossRefGoogle Scholar
  25. 25.
    G. M. Sheldrick (2008). SHELXL-97. Acta cryst. 64, 112.CrossRefGoogle Scholar
  26. 26.
    K. Brandenburg, DIAMOND 2.0, Visual Crystal Structure Information System, Crystal Impact Gbr, Bonn, Germany, 2007.Google Scholar
  27. 27.
    A. M. B. Salah, H. Naïli, M. Arczy_nski, and M. Fitta (2016). J. Organomet. Chem. 805, 42.CrossRefGoogle Scholar
  28. 28.
    J. Janczak and G. J. Perpetuo (2001). Acta Cryst. C57, 123.Google Scholar
  29. 29.
    J. Janczak and G. J. Perpetuo (2001). Acta Crystallogr. C 57, 1120.CrossRefGoogle Scholar
  30. 30.
    J. Janczak and G. J. Perpetuo (2001). Acta Crystallogr. C 57, 1431.CrossRefGoogle Scholar
  31. 31.
    J. Bernstein, R. E. Davis, L. Shimoni, and N.-L. Chang (1995). Angew. Chem. Int. Ed. 34, 1555.CrossRefGoogle Scholar
  32. 32.
    T. Steiner (2002). Angew. Chem. Int. Ed. 41, 48.CrossRefGoogle Scholar
  33. 33.
    G. R. Desiraju and T. Steiner The Weak Hydrogen Bond In Structural Chemistry and Biology (Oxford University Press, New York, 1999).Google Scholar
  34. 34.
    V. Arjunan, M. Kalaivani, M. K. Marchewka, and S. Mohan (2013). Spectrochim. Acta Part A 107, 90.CrossRefGoogle Scholar
  35. 35.
    V. Sangeetha, M. Govindarajan, N. Kanagathara, M. K. Marchewka, S. Gunasekaran, and G. Anbalagan (2014). Spectrochim. Acta Part A 125, 252.CrossRefGoogle Scholar
  36. 36.
    Abderrazek Oueslati, Alain Buloub, Florent Calvayrac, Karim Adi, Mohamed Gargouri, and Faouzi Hlel (2013). Vib. Spectrosc. 64, 10.CrossRefGoogle Scholar
  37. 37.
    S. K. Seth (2014). Inorg. Chem. Commun. 43, 60.CrossRefGoogle Scholar
  38. 38.
    M. Mitra, P. Manna, A. Bauza, P. Ballester, S. K. Seth, S. Ray Choudhury, A. Frontera, and S. Mukhopadhyay (2014). J. Phys. Chem. B 118, 14713.CrossRefGoogle Scholar
  39. 39.
    S. K. Seth, D. Sarkar, A. Roy, and T. Kar (2011). CrystEngComm. 13, 6728.CrossRefGoogle Scholar
  40. 40.
    S. K. Seth, D. Sarkar, A. D. Jana, and T. Kar (2011). Cryst. Growth Des. 11, 4837.CrossRefGoogle Scholar
  41. 41.
    M. Mitra, S. K. Seth, S. R. Choudhury, P. Manna, A. Das, M. Helliwell, A. Bauza, A. Frontera, and S. Mukhopadhyay (2013). Eur. J. Inorg. Chem. 2013, 4679.CrossRefGoogle Scholar
  42. 42.
    S. K. Seth (2014). J. Mol. Struct. 1070, 65.CrossRefGoogle Scholar
  43. 43.
    P. Manna, S. Ray Choudhury, M. Mitra, S. K. Seth, M. Helliwell, A. Bauza, A. Frontera, and S. Mukhopadhyay (2014). J. Solid State Chem. 220, 149.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratoire des Sciences des Matériaux et d’EnvironnementFaculté des Sciences de SfaxSfaxTunisia

Personalised recommendations