Journal of Cluster Science

, Volume 27, Issue 5, pp 1501–1518 | Cite as

Microstructural and Thermal properties of Plasma Sprayed YSZ Nano-Clusters Thermal Barrier Coatings

  • Satish Tailor
  • Manoj Singh
  • R. M. Mohanty
  • A. V. Doub
Original Paper


In the present study, a novel durable three layered thermal barrier coating (TBCs) were prepared using atmospheric plasma spray (APS) on Ni718 superalloy substrate consisting of the YSZ nano-clusters. In order to develop a functionally graded coating system, the non-transformable (t′) tetragonal YSZ nano-clusters (40 nm) were synthesized by a sol–gel process and characterized at the temperature 1200 °C for 100 h. NiCrAlY was used as bond coat. The developed coating system introduces a protective top layer of MoSi2 (top coat) for preventing diffusion of oxygen, oxidation of the bond coating, provides thermal insulation and protection against corrosion and high temperature erosion. Microstructural, thermal oxidation resistance, thermal shock and adhesion strength of TBCs were analyzed. Different properties of as-sprayed TBCs have no significant effect on thermal oxidation property. The TBCs have shown better thermal shock resistance but lower adhesion strength than the TBCs made of without MoSi2 layer.


Functionally graded coatings Thermal barrier coating YSZ nano-clusters Thermal shock resistance 



The authors gratefully acknowledge the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (Grant № К4-2014-081) and experimental support of National University of Science and Technology “MISiS”, Moscow, Russia and Council of Scientific and Industrial Research, CSIR-HQS, Rafi Marg, New Delhi-110001, India.


  1. 1.
    H. Reymann, MCrAlY Deposition by HVOF: A Suitable Alternative to LPPS. Turbine Forum: Advanced Coatings for High Temperatures (Nice Port St. Laurent, 2002), pp. 17–19.Google Scholar
  2. 2.
    K. Vaidyanathan, E. H. Jordan, and M. Gell (2004). Acta Mater. 52, 1107.CrossRefGoogle Scholar
  3. 3.
    J. A. Thompson and T. W. Clyne (2001). Acta Mater. 49, 1565.CrossRefGoogle Scholar
  4. 4.
    K. W. Schlichting, N. P. Padture, E. H. Jordan, and M. Gell (2003). Mater. Sci. Eng. A 342, 120.CrossRefGoogle Scholar
  5. 5.
    M. P. Boyce Gas Turbine Engineering Handbook, 2nd ed (Gulf Professional Publishing, Houston, 2002).Google Scholar
  6. 6.
    R. L. Jones, R. F. Reidy, and D. Mess (1996). Surf. Coat. Technol. 82, 70.CrossRefGoogle Scholar
  7. 7.
    N. P. Padture and H. E. Jordan (2002). Science 296, 280.CrossRefGoogle Scholar
  8. 8.
    R. W. Trice, Y. J. Su, J. R. Mawdsley, and K. T. Faber (2002). J. Mater. Sci. 37, 2359.CrossRefGoogle Scholar
  9. 9.
    R. Sivakumar and B. L. Mordike (1989). Surf. Coat. Technol. 37, 139.CrossRefGoogle Scholar
  10. 10.
    C. S. Richard, G. Beranger, J. Lu, and J. F. Flavenot (1996). Surf. Coat. Technol. 82, 99.CrossRefGoogle Scholar
  11. 11.
    A. Kulkarni, H. Herman, F. Decarlo, and R. Subramanian (2004). Metall. Mater. Trans. A. 35, 1945.CrossRefGoogle Scholar
  12. 12.
    H. X. Deng, H. J. Shi, H. C. Yu, and B. Zhong (2011). Surf. Coat. Technol. 205, 3621.CrossRefGoogle Scholar
  13. 13.
    A. González, E. López, A. Tamayo, E. Restrepo, and F. Hernández (2010). DYNA 77, 151.Google Scholar
  14. 14.
    M. Hetmanczyk, L. Swadzba, and B. Mendala (2007). J. Achiev. Mater. Manuf. Eng. 24, 1.Google Scholar
  15. 15.
    R. C. Reed The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
  16. 16.
    M. R. Winter and D. R. Clarke (2006). Acta Mater. 54, 5051.CrossRefGoogle Scholar
  17. 17.
    J. Ilavsky, J. K. Stalick, and J. Wallace (2001). J. Therm. Spray Technol. 10, 497.CrossRefGoogle Scholar
  18. 18.
    J. A. Krogstad, M. Lepple, Y. Gao, D. M. Lipkin, and C. G. Levi (2011). J. Am. Ceram. Soc. 94, 4548.CrossRefGoogle Scholar
  19. 19.
    J. T. Demasi-Marcin and D. K. Gupta (1994). Surf. Coat. Technol. 68, 1.CrossRefGoogle Scholar
  20. 20.
    T. Sourmail, Coatings for high temperature applications, University of Cambridge, 2004. Available: [date 30 October 2012].
  21. 21.
    L. Seadzba, et al. (1993). Surf. Coat. Technol. 62, 486.CrossRefGoogle Scholar
  22. 22.
    W. Beele, G. Marijnissen, and A. V. Lieshout (1999). Surf. Coat. Technol. 120–121, 61.CrossRefGoogle Scholar
  23. 23.
    H. Xu and H. Guo Thermal Barrier Coatings (Woodhead Publishing Limited, Sawston, 2011).CrossRefGoogle Scholar
  24. 24.
    T. Kato, K. Ogawa, and T. Shoji (2002). J. Jpn. Therm. Spray. Soc. 39, 1.Google Scholar
  25. 25.
    D. Seo, K. Ogawa, M. Tanno, T. Shoji, and S. Murata (2007). Surf. Coat. Technol. 201, 7952.CrossRefGoogle Scholar
  26. 26.
    A. Manap, A. Nakano, and K. Ogawa (2012). J. Therm. Spray Technol. 21, 586.CrossRefGoogle Scholar
  27. 27.
    K. Ogawa, K. Ito, T. Shoji, D. W. Seo, H. Tezuka, and H. Kato (2006). J. Therm. Spray Technol. 15, 640.CrossRefGoogle Scholar
  28. 28.
    J. Y. Byun, J. K. Yoon, G. H. Kim, J. S. Kim, and C. S. Choi (2002). Scr. Mater. 46, 537.CrossRefGoogle Scholar
  29. 29.
    K. Sonoya and S. Tobe (2009). J. Solid Mech. Mater. Eng. 3, 1127.CrossRefGoogle Scholar
  30. 30.
    S. Tailor, M. Singh, and A. V. Doub (2016). J. Clust. Sci. In press.Google Scholar
  31. 31.
    M. Pechini (1967). Patent No. 3,330,697. United States Patent Office.Google Scholar
  32. 32.
    K. Singh, L. Pathak, and S. Roy (2007). Ceram. Int. 33, 1463.CrossRefGoogle Scholar
  33. 33.
    S. Sakka Handbook of Sol–Gel Science and Technology. 1. Sol–Gel Processing, vol. 1 (Springer, New York, 2005).Google Scholar
  34. 34.
    Y.-W. Zhang, Z.-G. Yan, F.-H. Liao, C.-S. Liao, and C.-H. Yan (2004). Mater. Res. Bull. 39, 1763.CrossRefGoogle Scholar
  35. 35.
    A. Naumenko, N. Berezovska, M. Biliy, and O. Shevchenko (2008). Phys. Chem. Solid State 9, 121.Google Scholar
  36. 36.
    J. Ilavsky, A. J. Allen, G. G. Long, et al. (1997). J. Am. Ceram. Soc. 80, 733.CrossRefGoogle Scholar
  37. 37.
    G. Bolelli, K. Sabriruddin, L. Lusvarghi, et al. (2010). Surf. Coat. Technol. 205, 363.CrossRefGoogle Scholar
  38. 38.
    T. Nakamura, G. Qian, and C. C. Berndt (2000). J. Am. Ceram. Soc. 83, 578.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Satish Tailor
    • 1
  • Manoj Singh
    • 2
  • R. M. Mohanty
    • 3
  • A. V. Doub
    • 1
  1. 1.Department of Protection of Metal and Surface TechnologyNational University of Science and Technology “MISIS”MoscowRussia
  2. 2.Laboratory of Biomedical NanomaterialsNational University of Science and Technology “MISIS”MoscowRussia
  3. 3.Council of Scientific and Industrial ResearchCSIR-HQSNew DelhiIndia

Personalised recommendations